Введение к работе
Актуальность темы. Современный этап развития радиотехнических информационных систем характеризуется следующей общей тенденцией. Она заключается в том, что объектом их обработки являются различного рода изображения, достаточно сложные по структуре и с неоднородными статистическими свойствами. Примером могут служить телевизионные, диагностические и охранные системы, системы наблюдения за земной и водной поверхностями, ближним космическим пространством и др. Задачей таких систем является не только такая пассивная функция, как формирование самих изображений, но, в первую очередь, понимание изображений – обнаружение на сложном статистически неоднородном и многоградационном по яркости фоном представляющих интерес объектов, распознавание и оценка их параметров. Аэрокосмические сцены поверхности Земли и сцены с изображениями медико-биологических объектов относятся к наиболее сложным для обработки изображениям. Чаще всего изображения содержащихся в них объектов весьма несовершенны, обладают недостаточной по отношению к фону контрастностью, четкостью, искажены помехами и шумами. По этим сигналам оператору затруднительно принимать необходимые решения в темпе поступления изображения, т.е. в реальном масштабе времени. Особенно остро стоит эта проблема в полностью автоматизированных системах. Требуемая для решения поставленных задач производительность цифрового процессора составляет 108-1014 и более элементарных операций в секунду, что затрудняет, а в целом ряде случаев, исключает получение результатов обработки в реальном или близком к нему масштабах времени.
В последние годы задача значительно осложнилась в связи с необходимостью обработки не только плоских, 2D изображений, но и пространственных, 3D изображений. Как показывает обзор достигнутых результатов в этой области, решение таких задач, как с теоретических, так и с практических позиций, далека от завершения. Существует немало причин для подобного вывода, но необходимо отметить, что такая часто приводимая причина как недостаточная степень развития вычислительной техники, является, на наш взгляд, второстепенной. Отсутствие результатов обработки изображений, сопоставимых по своей эффективности с возможностями человека, объясняется, в первую очередь, недостаточно развитыми теоретическими подходами. В большинстве публикаций по вопросам обработки изображений рассматриваются различные эвристические подходы и даются рекомендации в пользу слабо проверенных и сильно ограниченных методов.
Особенностью данной диссертационной работы является компромисс, состоящий в выборе упрощенной, но достаточно адекватной модели изображения, и применение на базе такой модели строгих теоретических подходов для обработки реальных изображений, основанных на теории сигналов. Рассматриваемая в диссертации упрощенная модель изображения, представляет в аналитическом виде форму этого изображения, задаваемую ее контуром. Форма изображения является концентратором информации, содержащейся в изображении. Она интерпретируется как заданный в аналитическом виде сигнал, для обработки которого используются известные и новые разработанные в диссертации методы контурного и кватернионного анализа сигналов.
В экспериментальных исследованиях по психологии оператора радиолокационной станции обзора земной поверхности было показано, что процесс предварительного формирования у него зрительного образа состоит из следующих этапов: грубое различение общих пропорций изображения объекта и его положения на экране индикатора, мерцание формы, различение резких перепадов яркости, выделение отдельных деталей, восприятие формы и контура изображения объекта. Приводится гипотеза о формировании зрительного образа в сознании человека. Предполагается, что при восприятии глаз осуществляет отслеживание границы изображения объекта. В результате в сознании человека отличаются характерные особенности формы объекта. Также высказывается мнение о том, что при восприятии в сознании человека вырабатываются два образа: образ формы и образ внутренней части изображения объекта. Вместе с тем, общепринятое определение формы объекта отсутствует. В большинстве работ, где определение этого термина является важным моментом, указывается на сложность данного вопроса.
Большой вклад в развитие теории распознавания изображений внесли: У. Прэтт, Р. Гонсалес, Т. Павлидис, Ю.И. Журавлев, В.А. Сойфер, В.С. Киричук, Ю.Г. Васин, В.С. Титов, К.К. Васильев, А.А. Потапов, Г.И. Василенко, П.А. Бакут и многие другие. Важнейшие результаты в области анализа радиотехнических сцен и распознавания образов получены учеными, входящими в Российскую общественную организацию «Ассоциация распознавания образов и анализа изображений»
Научная проблема, на решение которой направлена диссертационная работа, заключается в разработке методов распознавания изображений, инвариантных к преобразованиям переноса, масштабирования и вращения этих изображений при условии сохранении их формы. Выбор в качестве адекватной модели изображения аналитического представления формы этого изображения, задаваемую ее контуром, позволяет с единых позиций теории сигналов подходить к обработке реальных изображений. Интерпретация формы изображения как заданный в аналитическом виде сигнал, для обработки которого используются разработанные в диссертации методы контурного и кватернионного представления сигналов, должно послужить основой для применения аналитических методов обработки 3D изображений при создании новых, более совершенных, систем.
Цель диссертационной работы заключается в разработке методов распознавания плоских и объемных изображений по их форме, заданной в аналитическом виде на основе контурного и кватернионного анализа. Для достижения этой цели в диссертационной работе решаются следующие задачи:
1) выбор пространства для представления сигналов при решении задачи распознавания изображений;
2) формирование адекватных моделей изображений плоских и объемных изображений на основе контурного и кватернионного анализа;
3) разработка аналитического представления формы плоских и объемных изображений на основе контурного и кватернионного анализа;
4) разработка методов фильтрации поливекторных сигналов, задающих контуры плоских и объемных изображений;
5) разработка методов обработки и распознавания, расположенных на плоскости и в 3D пространстве изображений по их форме;
6) реализация разработанных методов обработки и распознавания 2D и 3D изображений по их форме и оценка их эффективности.
Методы исследования. Для решения поставленных в диссертационной работе задач были использованы методы теории распознавания образов, контурного и кватернионного анализа, цифровой обработки сигналов и изображений, теории вероятностей, теории функции комплексного переменного, алгебры гиперкомплексных чисел, численные методы и методы математического моделирования.
Научная новизна определяется результатами, полученными в диссертации впервые, и заключается в следующем:
1. Разработаны методы распознавания двумерных и трехмерных изображений по их форме, инвариантные к преобразованиям переноса, масштабирования и вращения этих изображений.
2. Исследованы методы фильтрации комплекснозначных и кватернионных сигналов, задающих контуры плоских и объемных изображений. Получены аналитические соотношения для согласованной фильтрации поливекторных сигналов и выяснены механизмы работы таких фильтров. Обнаружен эффект расщепления кватернионным фильтром гармоник спектра фильтруемого сигнала.
3. Разработан метод обработки изображений на основе согласованно-избирательной фильтрации для решения задачи обнаружения изображений объектов на сложном многоградационном и статистически неоднородном фоне.
4. Разработан на базе анализа векторных полей метод детектирования формы участков 3D поверхности.
Практическая значимость работы.
1. Полученные методы распознавания изображений по их форме, задаваемой контуром в комплекснозначном (для 2D изображений) или в кватернионном (для 3D изображений) виде, применены для решения задач распознавания плоских и объемных изображений биомедицинских объектов при создании информационных автоматизированных систем поддержки хирурга.
2. Разработанный метод согласованно-избирательной фильтрации изображений позволил решить задачу обнаружения изображений объектов на сложным нестационарном фоне в ландшафтных сценах и в сценах с изображениями медико-биологических объектов.
3. На базе фильтров, согласованных с комплекснозначными и кватернионными сигналами, решены инвариантно к преобразованиям переноса, масштабирования, вращения и сдвига начальной точки задачи распознавания плоских и объемных изображений по их форме.
4. Разработанный метод детектирования формы участков 3D поверхности использован для решения задач визуализации пространственных изображений.
Реализация результатов работы. Теоретические и практические результаты диссертационной работы использованы в НИР «Притирка-1К» и «Эксперт» при разработке распределенных информационных систем специального назначения ФГУП «Курский НИИ» МО РФ, а также при проведении НИР № 200/01709 («Статуэтка-УПКБ») в ОАО «УПКБ «Деталь». Результаты диссертационной работы использованы в следующих НИР, выполняемых автором в качестве исполнителя по грантам РФФИ (№№ 97-01-00906, 99-01-00186, 01-01-14029, 01-01-00298, 03-01-14065д, 04-01-00243, 05-01-96510 р_поволжье_а), Министерства общего и профессионального образования РФ (1997-1998 гг.), Миннауки и технологий (№0201.05.021, 1998г.), Минобразования РФ (№03.01.06.001, 2000г.), а также в НИР, выполняемых автором в качестве руководителя по г/б НИР в рамках Государственного контракта от «28» февраля 2006 г. №02.442.11.7328 ФЦНТП «Исследования и разработки по приоритетным направлениям развития науки и техники» на 2002-2006 годы» «Единая теория обработки изображений групповых точечных объектов» (шифр 2006-РИ-19.0/001/348), а также по гранту РФФИ «Разработка методов и создание информационной технологии визуализации и сравнительного анализа сопряженных пространственных статических и динамических сцен», проект 08-01-12000-офи. Результаты диссертационной работы внедрены в учебный процесс по направлениям подготовки «Радиотехника» и «Биомедицинская инженерия».
Апробация работы. Результаты работы обсуждались на международной конференции "Распознавание образов и анализ изображений: новые информационные технологии" (Нижний Новгород, 1997; Великий Новгород, 2002; Санкт-Петербург, 2004; Йошкар-Ола, 2007; Нижний Новгород, 2008); на Всероссийской конференции «Математические методы распознавания образов» (Москва, 2003, 2005, 2009); на Всероссийской научно-технической конференции «Компьютерные технологии в науке, проектировании и производстве» (Нижний Новгород, 1999); на международной конференции «Распознавание» (Курск, 2001, 2005, 2008); на международной научной конференции к 95-летию академика В.А. Котельникова «Современная радиоэлектроника в ретроспективе идей В.А. Котельникова» (Москва, 2003); на региональной научно-технической конференции (Казань, 2004); на международной научно-практической конференции «Авиакосмические технологии и оборудование» (Казань, 2006); на ежегодных научных конференциях по итогам НИР МарГТУ и научных семинарах кафедры радиотехнических и медико-биологических систем и др.
Публикации. Всего по теме диссертации опубликовано 67 работ: из них 2 монографии (издательство «Физматлит», Москва); 14 –в центральных научных журналах из Перечня ВАК; 26 – материалы конференций;
18 – в других научных изданиях и депонированные в ВИНИТИ; 6 – свидетельств об официальной регистрации программ в Роспатент.
Структура и объем работы. Диссертация состоит из введения, 6 глав, заключения и содержит 140 рисунков, 8 таблиц. Список литературы включает 179 наименований. Основная часть работы изложена на 322 стра-ницах.