Введение к работе
Актуальность темы
Важной проблемой современного промышленного производства является развитие научных исследований в области обеспечения безопасности функционирования сложных технических систем. Это касается, в первую очередь, использования в качестве объекта исследования адекватных динамических моделей и разработки математических методов исследования безопасности сложных технических систем. Одним из важнейших факторов математической модели динамической системы, напрямую связанных с безопасностью, является устойчивость.
Начиная с середины XIX века теорию устойчивости начали успешно применять для решения проблем безопасности эксплуатации технических систем. Главным объектом исследования в это время были автоматические регуляторы производственных процессов, такие как регулятор Уатта для паровой машины. В работах Максвелла, Вышнеградского возникла теория регулирования (тогдашний синоним теории управления), в которой сформулирована цель теории управления - обеспечение устойчивости динамической системы
В 30-ые - 40-е годы прошлого века изучались стационарные режимы. В
50-е годы запросы техники потребовали анализа нестационарных процессов,
в которых исследование устойчивости по Ляпунову оказалось
недостаточным при проектировании управления ракетой. Место задачи устойчивости как основной задачи теории управления начинает занимать задача отыскания оптимального управления.
Одним из важнейших достижений науки и техники является создание и использование поля центробежных сил, которое оказалось весьма эффективным в машиностроении (роторные системы), космической технике (стабилизация космических аппаратов вращением), жидкостные гироскопы и многих других. Существует большое количество работ, посвященных этим вопросам в космической технике. До инженерных методик доведены расчеты сложнейших аппаратов-центрифуг в химической технологии. В то же время далеко не все вопросы динамики роторных систем с жидкостью получили достаточное развитие и освещение.
В последние 5-7 лет профессором А.А. Гурченковым [1] и его учениками проводятся интенсивные исследования динамики вращающихся тел с полостями, содержащими жидкость. Задачи стабилизации и управления движением ротора с полостью, содержащей жидкость, являются важными как с теоретической точки зрения, так и в силу многочисленных технических приложений. Они возникают и при изучении движения самолетов, кораблей,
и спутников, где запас жидкого топлива, имеющийся на борту, оказывает существенное влияние на движение этих аппаратов.
Рассматриваемые вопросы находят свое применение при изучении динамики космических аппаратов с запасами топлива, которые равномерно закручиваются на орбите вокруг некоторой оси для стабилизации, равномерного нагрева солнечными лучами, создания искусственной силы тяжести и других целей.
В данной работе предложена методика для решения задач оптимального управления в применении к вращающимся телам, наполненным жидкостью.
Таким образом, актуальной научной проблемой диссертации является разработка новых подходов и методов для изучения динамики вращающихся твердых тел с жидким наполнением.
Цель и задачи исследования
Основной целью данной работы является анализ систем управления движением вращающихся твердых тел с жидким наполнением, совершающих возмущенное относительно равномерного вращения движение под действием моментов внешних сил. Рассматривается случай полного и частичного заполнения полости идеальной жидкостью. Компоненты момента внешних сил, действующих на систему, перпендикулярные оси стационарного вращения, предполагается рассматривать как управляющие воздействия.
Одной из главных задач исследований было получение зависимости характеристик системы от момента внешних сил. Другой задачей было выяснение устойчивости объекта, получение ограничений на параметры системы для обеспечения ее устойчивости.
Научная новизна
В последние годы проводятся интенсивные исследования динамики вращающихся тел с полостями, содержащими жидкость, для двух основных классов движений: ротационных и либрационных, что находится в русле важнейших приложений.
Эту проблему в настоящее время нельзя считать решенной с теоретической точки зрения, хотя она и была предметом ряда исследований.
Практически отсутствуют результаты о постановке задач оптимального управления для таких систем. В настоящей работе представлена методика получения соотношений между угловыми скоростями, перпендикулярными основному вращению, и моментом внешних сил, который рассматривается
как управление, дается постановка задач оптимального управления с различными функционалами и представлен математический аппарат для их эффективного решения.
Рассматриваются известные в теории управления модели; где в качестве связей фигурируют найденные соотношения, описывающие динамику тел с жидким наполнением.
Объект и предмет исследования
Объектом исследования является динамически симметричное твердое тело с полостью, частично или полностью заполненной идеальной жидкостью, которое вращается под действием моментов внешних сил. Предметом исследования являются уравнения динамики вращающегося твердого тела, содержащего жидкость, и нелинейные уравнения Навье-Стокса, описывающие поведение жидкости в полости вращающегося твердого тела.
Методы исследования
В работе применяются методы классической математической физики, такие как разделение переменных, решение задач на собственные значения, методы теории функции комплексного переменного, методы теории обобщенных функций, методы теории возмущения, асимптотические методы.
Для решения задач оптимального управления используется принцип максимума Л.С. Понтрягина
Вычисления и визуализация результатов расчетов проводились в среде MATLAB, а также в среде Borland Delphi..
Практическая ценность
Результаты работы включены в отчеты по грантам РФФИ, проекты № 06-01-00316, 09-01-00678 а.
Результаты диссертации могут быть использованы при изучении задач управления движением летательных аппаратов, движущихся в атмосфере, космических аппаратов с запасами жидкого топлива, которые закручиваются на орбите вокруг некоторой оси, для стабилизации, равномерного нагрева солнечными лучами, создания искусственной силы тяжести и других целей. Эти результаты также применимы при проектировании быстровращающихся роторов, центрифуг, гироскопов, имеющих внутри себя полости, заполненные жидкостью.
Разработанные методы решения динамических задач вращающихся твердых тел с жидким наполнением могут быть использованы в учебных курсах по теории оптимизации, а также для решения задач оптимального управления гибридными системами.
Апробация результатов
Представленные в работе результаты докладывались и обсуждались на международных научных конференциях «Гагаринские чтения» в МАТИ РГТУ им. К.Э Циолковского, IV Всероссийской научной конференции молодых ученых и студентов. Современное состояние и приоритеты развития фундаментальных наук в регионах. Анапа 2007, XVII Всероссийской конференция «Теоретические основы и конструирование численных алгоритмов и решение задач математической физики с приложением к многопроцессорным системам», посвященная памяти К. И. Бабенко. Дюрсо 2008, на Международном симпозиуме - Надежность и качество - Пенза, 2010, на научных семинарах в ИСА РАН, ИПМ РАН, ВЦ РАН.
Публикации основных результатов
Основные результаты диссертации опубликованы в 16 работах. Общий объем вклада автора составляет 2,13 п.л. Из них 3 в изданиях, рекомендованных ВАК, общий вклад автора в них составляет 1.3 п.л. В совместных работах результаты принадлежат соавторам в равных долях.
Структура и объем диссертации
Диссертация состоит из введения, четырех глав, заключения, списка использованных источников. Объем диссертации 102 страницы. Список использованных источников включает 133 наименования. Текст разделен на главы, параграфы и пункты. Каждая глава имеет свою нумерацию формул и рисунков. В каждой главе изложение ведется в значительной степени независимо от других глав. Вводимые обозначения заново определяются в каждой главе.