Введение к работе
Актуальность темы. В системах управления подвижных объектов (летательные аппараты, морские надводные и подводные суда, сухопутные средства перемещения) получили распространение гироскопические устройства различных типов. При этом все они, 'независимо от принципа . действия и структуры, работают либо в индикаторном, либо силовом режимах. В первом случае гироскопические устройства (ГУ) выдают информацию о параметрах движения объекта в базовой системе координат, для реализации которой они и предназначены; во втором случае ГУ обеспечивают стабилизацию разнообразных измерительных приборов в заданном положении. Можно отметить, что силовой режим работы является более общим, так как в этом случае можно получить и необходимую информацию о положении подвижного объекта (ПО).
ГУ, работающие в силовом режиме, называются гиростабилизаторами (ГС) и подразделяются на непосредственные, силовые и индикаторные в зависимости от тех функций, которые выполняет в их структуре гироскоп. Силовые и индикаторные ГС являются сложными электромеханическими устройствами с высокой точностью работы и стабилизируют значительные массы (от нескольких килограмм и выше); непосредственные ГС предназначены для стабилизации небольших масс (до нескольких килограмм) и отличаются от первых простотой конструкции, высокой надежностью, но худшими . точностными характеристиками. По 'своей структуре непосредственные ГС идентичны ГУ, работающим в индикаторном режиме; их отличие чисто количественное и связано большей величиной кинетического момента гироскопа. Поэтому результаты исследований непосредственных ГС могут быть распространены на индикаторные приборы и наоборот.
Анализ применения ГУ различных типов позволяет выделить два ' направления в их развитии:
-
Разработка и внедрение в практику высокопрецезионных гироскопических систем сложной структуры.
-
Разработка и использование сравнительно простых по структуре технических устройств среднего класса точности.
ГУ первого типа находят применение в системах автоматического управления ПО, где отсутствует контроль за их функционированием со стороны' человека, в инерциальных навигационных системах (ИНС), где точность стабилизации акселерометров непосредственно влияет на . достоверность выходной информации, и т.п. Погрешность работы таких систем характеризуется долями угловой минуты.
ГУ второго типа применяются в тех случаях, когда их информация предназначена для человека или для стабилизации измерительных приборов различных типов (фотоаппараты, антенны и др.). Наметившаяся в последнее
десятилетие тенденция к развитию средств "малого" транспорта (небольших самолетов, дельтапланов, яхт, катеров и т. п.) заметно расширяет область их применения. При этом надо также иметь в виду существенное снижение финансирования научных и конструкторских разработок и, то обстоятельство, что нередко применение более простых структур позволяет быстрее решить конкретную техническую задачу. Требуемая от этих устройств точность оценивается долями градуса и является среднестатистической, поскольку ее величина зависит от действующих возмущений. Последние за время движения ПО изменяются в достаточно широких пределах. Для обеспечения одинаковой погрешности при различных возмущениях'в ГУ рассматриваемого типа имеет смысл применять достаточно.простые способы изменения их параметров, так как апробированные в ГУ первого типа методы ( настройка на период Шулера, адаптация и т.д.) существенно усложняют структуру технической системы.
Теория ГУ несколько десятилетий назад выделившаяся в отдельную прикладную науку, в настоящее время обладает широким арсеналом средств, , позволяющим проводить исследование электромеханических систем любой сложности. Как правило, анализ ГУ базируется на дифференциальных уравнениях, в которых в качестве переменных используются кардановые углы, определяющие движение системы относительно ПО. В большинстве же случаев представляет интерес оценка той точности, с которой техническая система выполняет свои функции. Эта точность определяется "абсолютными" (по терминологии академика А.Ю.Ишлинского) -координатами; кавычки употреблены здесь в связи с тем, что указанные координаты характеризуют точность выдачи системой не инерциальных, а базовых осей координат. В качестве последних могут использоваться географическая, ортодромическая, горизонтальная и другие системы координат. Для перехода от кардановых углов к "абсолютным" разработан ряд методов, которые требуют применения сложного математического аппарата и к тому же позволяют провести исследование с той или' иной степенью приближения. Поэтому более целесообразно, особенно при решении технических задач, провести преобразование исходных уравнений на основе зависимостей, полученных при анализе геометрии и кинематики исследуемого устройства.
В связи с вышеизложенным создание достаточно простых технических устройств для применения в системах управления ПО и методов их анализа для использования в инженерной практике является весьма актуальной задачей.
Целью работы является создание указателя вертикали на базе тяжелого гироскопа, обеспечивающего требуемую по техническому заданию точность работы при установке на подвижные объекты с широким радиусом действия, развитие методов составления математической модели технических систем и . разработка методики проектирования систем автоматического регулирования указанного класса гироскопических устройств.
Автор защищает: принципиальную схему указателя вертикали на б.азе тяжелого гироскопа, работающего в силовом или индикаторном режимах и обладающего
широкими возможностями настройки для обеспечения требуемой
точности работы в различных условиях эксплуатации; метод получения дифференциальных уравнений технических систем ,
позволяющий в качестве переменных использовать ^координаты,
определяющие точность его работы; > методику проектирования предложенного гироустройства, реализованную на
машинном носителе.
Методы исследования. Для составления математической модели сказателя вертикали применялся второй метод Лагранжа, их преобразование )существлялось с использованием .матричного исчисления и сферической тригонометрии, а теоретические исследования - с помощью современного математического аппарата анализа и синтеза линейных систем и применения 1ЭВМ. Лабораторные исследования макета проводились с учетом основных золожений теории эксперимента.
Научная новизна работы состоит в получении прецессионных и технических уравнений движения исследуемого гироустройства и іредложенном способе преобразования дифференциальных уравнений путем шализа геометрии и кинематики системы. В результате такого преобразования >беспечивается переход' от переменных, характеризующих движение технической системы относительно ПО, к координатам, определяющим точность его работы. Также было выяснено, что точность технической :истемы, движение которой описывается уравнением четвертого порядка, дожет быть существенно повышена при соблюдении предлагаемых. юотношений между ее основными параметрами.
Практическая ценность работы состоит в том, что предложена схема
указателя вертикали для работы в индикаторном, силовом и индикаторно -
;иловом режимах , обеспечивающая изменение его основных параметров с'
делью получения одинаковой точности при работе в различных условиях
жсплуатации. Практическую ценность представляют также полученные
іависимости, определяющие оптимальные (с точки зрения заданной точности ) \
^отношения" между параметрами указателя вертикали, и методика его
троектирования с использованием ПЭВМ. Работа выполнена в соответствии с
сомплексной научно - технической программой
' Технические Университеты" 53 № 0593 ТУ.
Реализация результатов работы. Выводы теоретического анализа проверены путем экспериментальных исследований макета указателя зертикали в лабораторных условиях. Результаты эксперимента подтвердили зыводы теоретических исследований.