Введение к работе
. Диссертационная работа посвящена раз-аботке алгоритма оптимизации стержневых систем с варьирование параметров раничных условий, в число которых входят жесткости вігутрегашх и внешних вязей, величины смещений опор и других воздействий, сводимых к узловым, ілгоритм основан на постановке_задачи оптимизации в форме задачи матема-ического программирования (МП) и расчете конструкіщй методом конечных лементов (МКЭ). Рассматриваются стержневые системы с линейно-упругими войствами. Прикладываемые нагрузки являются статическими и многовари-1ГГНЫМИ. Варьируемые параметры изменяются непрерывно.
Используется традиционная постановка, когда точная задача МП заменятся на итерационную с построением приближенных зависимостей параметров зстояния (внутренних усилий и перемещений) от варьируемых параметров, лгоритм рассчитан на реализацию в виде программного комплекса в составе АПР.
Актуальность проблемы. В связи с высокой стоимостью и материалоем-истью строительства, и строительных конструкций в частности, а также рас-дцей в настоящее время ограниченностью ресурсов вопросы оптимального эоектирования (ОП) становятся все более актуальными.
Постановка задачи ОП в форме задачи МП с использованием вычисли-ільной техники и численных методов исследования позволяет качественно, по >авнению вариантным проектированием, и на более высоком уровне решить юблему экономии ресурсов различного вида.
Одной из актуальных задач ОП является задача оптимизации с варьиро-шием параметров граничных условий, так как включение последних в число ірьйруемьіх параметров позволяет добиться существенного улучшения техни-кжономическоих показателей проекта.
Задачи работы. В диссертации поставлены и решены задачи :
исследование особенностей учета граничных условий в рамках расчета по КЭ;
определение вида зависимостей параметров состояния стержневых систем їй варьировании параметров граничных условий;
разработка алгоритмов их качественных аппроксимаций;
получение глобально-оптимального решения задачи МП;
решение ряда практических задач оптимизации с варьированием парамет-в граничных условий.
Научная новизна и практическая ценность диссертации.
Записан вид явных зависимостей параметров состояния от варьируемых раметров, в т.ч. от параметров граничных условий.
Разработана методика и алгоритмы построения качественных аппрокси-іций параметров состояния.
Предложены качественные выражения аппроксимаций параметров со-ояния на заданной области. Показана эффективность их использования. Не-
_>
линейная задача наименьших квадратов (НК) при поиске коэффициентов ai проксимаций для дробных выражений преобразована в линейную.
Для построения аппроксимаций параметров состояния в окрестности тс ки от варьируемых жесткостных характеристик использованы аппроксимащ Паде вида [1/1] и [0/1]. Изучены их свойства, обосновано применение, даны р комендации по использованию.
Применены комбинированные аппроксимирующие выражения, состав к торых связан с видом варьируемых параметров.
Для поиска глобально-оптимального решения использовано сочетание м тода подвижного внешнего штрафа (МПВШ) и ^-преобразования. Метод v преобразования улучшен на стадии уточнения решения.
Разработан и реализован на ЭВМ в виде человеко-машинной технолоп алгоритм оптимизации стержневых систем с варьированием параметров гр ничных условий, обладающий быстрой сходимостью и высокой эффективн стыо при решении задач реального проектирования.
Апробация полученных результатов. Основные положения диссертации се частей доложены на:
конференции "Расчетные методы механики деформируемого твердого і ла" (г. Новосибирск, СГАПС, 1995 г.);
Всероссийском семинаре "Проблемы оптимального проектирования с оружений" (г. Новосибирск, НГАС,-1997 г.)
I Международном конгрессе "Ресурсосберегающие и энергосберегаюш технологии реконструкции и нового строительства" (г. Новосибирск, 1999 т.)
научно-технических конференциях НИСИ-НГАС-НГАСУ 1986-1998 гг.
Структура и объем диссертации. Работа состоит го введения, четыр глав, основных результатов, выводов и списка литературы. Она содержит 2 страниц, в том числе 145 страниц машинописного текста, 21 рисунок и 21 т; лицу. Список используемой литературы включает 179 наименований.