Введение к работе
Актуальность работы. В последнее время магнитостатические волны (МСВ) и устройства на их основе, такие как линии задержки, шумоподавители, электрически перестраиваемые полосно-пропускающие и полосно-заграж-дающие фильтры, перестраиваемые генераторы [1] получили широкое распространение. Они могут быть использованы для обработки сигналов в диапазоне СВЧ в реальном масштабе времени, в спутниковом телевидении, фазированных антенных решетках.
Благодаря возросшему интересу к применению МСВ в сантиметровом диапазоне волн стали актуальными исследования распространения обратных объемных МСВ (ООМСВ) в плоскослоистых структурах [2]. Дисперсионные характеристики ООМСВ в структуре феррит-диэлектрик-металл (ФДМ-структуре) были впервые исследованы в [3]; в работах [4, 5] рассматривалась неколлинеарность групповой и фазовой скоростей ООМСВ, а также эффекты управления лучом, вызванные анизотропией их распространения, которые необходимо учитывать при расчете расширения волнового пучка ООМСВ, излучаемого линейным преобразователем конечной длины. В работе [6] было показано, что ООМСВ обладают невзаимностью, которую также нужно учитывать. Для решения этих задач необходимо исследовать закономерности распространения луча ООМСВ, возбуждаемого линейным преобразователем конечной длины в ФДМ-структуре.
Планарные слоистые структуры, содержащие намагниченные ферритовые пленки (ФП), перспективны для использования в квазиоптических аналогах СВЧ элементов на МСВ [2, 6,7]. Для проектирования таких устройств необходимо уметь рассчитывать дисперсионные характеристики МСВ в области малых волновых чисел1, где магнитостатическое приближение использовать нельзя. Дисперсионное уравнение, предложенное в [8], справедливо для структуры диэлектрик-феррит-диэлектрик (ДФД-структуры), в которой касательно намагниченная ФП окружена однородной диэлектрической средой. На практике же среды по обе стороны ФП имеют различную диэлектрическую проницаемость: например, одной поверхностью ФП железо-иттриевого граната (ЖИГ) граничит с подложкой из галлий-гадолиниевого граната (ГГТ), а другой поверхностью - с поликоровой подложкой, на которой располагаются преобразователи МСВ. При распространении поверхностной МСВ (ПМСВ) с малыми волновыми числами в узком интервале частот при определенном соотношении параметров структуры может возникать волна, вытекающая из ФП в окружающие диэлектрические пространства [9]. По этим причинам в указанных структурах необходимо точно рассчитывать дисперсионные характеристики МСВ, особенно в области малых волновых чисел.
При проектировании устройств на МСВ нужно точно определять направления групповых скоростей и фокусировки МСВ. В работах [7, 10] представлены теоретические исследования фокусировки магнитоплазменных поля-ритонов, приведены диаграммы фокусировки ПМСВ и ООМСВ, распространяющихся в свободной касательно намагниченной ферритовой пластине. Одна-
1 Область малых волновых чисел к МСВ (обычно от единиц до нескольких десятков см"1) - область вблизи начальной частоты спектра МСВ, где к становятся сравнимыми с волновым числом в вакууме yL = col с [1, 9].
ко, на практике широкое применение получили магнитные пленки ЖИГ, выращенные методом жидкофазной эпитаксии на диэлектрической подложке ГГГ. Другой поверхностью пленка может также граничить с диэлектрическим материалом. Использованное в [7] магнитостатическое приближение не позволяет учесть влияние на дисперсионные характеристики МСВ диэлектриков с отличными от единицы относительными диэлектрическими проницаемостями на границах магнитного слоя, особенно при малых волновых числах [8]. Точное определение дисперсионных характеристик может стать решающим, например, при расчете формы преобразователя МСВ с заданными свойствами. Поэтому является актуальным анализ фокусировки и направления групповых скоростей МСВ с помощью более точного электродинамического подхода.
При разработке интегральных СВЧ устройств на МСВ необходимо учитывать изменение направления распространения и перераспределение энергии МСВ между различными элементами устройства. Поэтому перспективны планарные магнонные кристаллы (МК) на основе ФП и металлического экрана с периодической решеткой из щелей [11, 12, 13], которая проста в изготовлении с помощью микроэлектронной технологии интегральных схем. В [12, 13] предложен анализ планарного МК, в котором между ФП и металлическим экраном находится воздушная прослойка (є = 1), и ширина щели в экране много меньше длины волны МСВ. Для расширения возможностей управления МСВ в МК актуальным является изучение плоскослоистых структур, содержащих слой диэлектрика (є > 1) между ФП и экраном. Не менее актуальным является исследование МК, когда размеры щели соизмеримы с длиной волны МСВ. Решение подобных задач начинают с нахождения электромагнитных полей (ЭМП), возникающих в указанных структурах при дифракции МСВ на щелях решетки, т. е. ЭМП, возбуждаемых магнитными токами - эквивалентами щелевого отверстия [14].
Таким образом, из вышесказанного следует, что исследование анизотропных свойств МСВ в плоскослоистых структурах, содержащих намагниченную ФП, является актуальным и представляет научный интерес.
Цель настоящей диссертационной работы состоит в: исследовании характеристик распространения и фокусировки ПМСВ и ООМСВ в области малых волновых чисел в плоскослоистых структурах, содержащих касательно намагниченную ФП, ограниченную по обе стороны средами с различной диэлектрической проницаемостью; анализе влияния металлического экрана на дифракционные свойства линейного излучателя конечной длины, возбуждающего луч ООМСВ в ФДМ-структуре; разработке метода расчета ЭМП, возникающих при дифракции МСВ на щелевом отверстии в металлическом экране планарной ФДМ-структуры с ФП, намагниченной нормально и касательно к поверхности.
В процессе работы над диссертацией решены следующие задачи:
-
В магнитостатическом приближении проведен расчет дифракционных профилей пучка ООМСВ, возбуждаемого линейным преобразователем конечной длины в плоскослоистой ФДМ-структуре при различных толщинах диэлектрического слоя и величине поля подмагничивания.
-
При помощи строгого электродинамического метода исследованы дисперси-
онные характеристики и направления распространения энергии, в частности, фокусировка и направление групповых скоростей МСВ, возбуждаемых в касательно намагниченной ФП, граничащей по обе стороны с диэлектриками с различной диэлектрической проницаемостью, в области малых волновых чисел, где магнитостатическое приближение использовать нельзя. 3. Разработан метод расчета в магнитостатическом приближении ЭМП, возникающих при дифракции на щели в металлическом экране МСВ, распространяющихся в плоскослоистых ФДМ-структурах, содержащих нормально и касательно намагниченную ФП.
Научная новизна работы заключается в следующем:
впервые проведен расчет дифракционных профилей пучка ООМСВ, возбуждаемого линейным излучателем конечной длины в ФДМ-структуре, содержащей касательно намагниченную ФП, и проанализировано влияние металлического экрана на дифракционные свойства излучателя в зависимости от его удаленности от ФП при различной величине поля подмагничивания;
предложен строгий электродинамический метод расчета дисперсионных характеристик МСВ, в случае, когда они распространяется под произвольным углом в плоскости касательно намагниченной ФП, окруженной по обе стороны диэлектриками с различной диэлектрической проницаемостью, который позволяет точно рассчитать дисперсионные характеристики ПМСВ и ООМСВ в области малых волновых чисел; с помощью разработанного метода получено дисперсионное уравнение, на основе которого проведен анализ зависимости минимального волнового числа и границ частотного диапазона ООМСВ и ПМСВ от толщины ФП и относительных диэлектрических проницаемостей слоев, граничащих с ФП;
впервые на основе точного дисперсионного уравнения получены диаграммы фокусировки ПМСВ и ООМСВ, излучаемых точечным преобразователем в структурах, содержащих ФП, граничащую со средами с разной диэлектрической проницаемостью. Также в указанных структурах получены векторные диаграммы направлений групповых и фазовых скоростей ПМСВ и ООМСВ с малыми волновыми числами, которые возбуждаются тонким линейным бесконечно длинным преобразователем;
получены аналитические выражения для ЭМП, возбуждаемых источниками магнитного тока, эквивалентными щелевому отверстию в металлическом экране при дифракции на нем МСВ, в ФДМ-структурах с ФП, намагниченной нормально или касательно к поверхности.
Основные положения и результаты, выносимые на защиту.
-
Метод расчета в магнитостатическом приближении дифракционных профилей пучка ООМСВ, возбуждаемого линейным преобразователем конечной длины в плоскослоистой ФДМ-структуре, позволяющий оценить для различных значений поля подмагничивания влияние на дифракционную расходимость луча ООМСВ металлического экрана при различной толщине диэлектрического слоя, отделяющего экран от ферритовой пленки.
-
Строгий электродинамический метод расчета дисперсионных уравнений МСВ, которые распространяются под произвольным углом в плоскости
касательно намагниченной ферритовой пленки, окруженной по обе стороны диэлектриками с различной диэлектрической проницаемостью, позволяющий точно рассчитывать дисперсионные характеристики МСВ в области малых волновых чисел.
-
Совокупность новых теоретических результатов, полученных при анализе в области малых волновых чисел дисперсионных характеристик и направлений распространения энергии ПМСВ и ООМСВ в ДФД-структурах. В частности, показано, что в области малых волновых чисел ПМСВ и ООМСВ представляют собой поверхностную (ПЭМВ) и обратную объемную (ООЭМВ) электромагнитные волны, соответственно. Рассчитанные дисперсионные зависимости ПЭМВ и ООЭМВ, находящиеся в хорошем согласии с результатами эксперимента, имеют существенные отличия от теоретических результатов, получаемых в магнитостатическом приближении, особенно, когда диэлектрические проницаемости диэлектриков, окружающих ферритовую пленку, отличатся от диэлектрической проницаемости воздуха.
-
Метод расчета в магнитостатическом приближении электромагнитных полей, возникающих при дифракции МСВ на щелевом отверстии в металлическом экране в планарных ФДМ-структурах, в которых ферритовая пленка может быть намагничена касательно или нормально к поверхности.
Достоверность и обоснованность результатов диссертационной работы подтверждается использованием современных строгих методов расчета, проверкой их сходимости; согласованностью полученных аналитических и расчетных результатов с данными, представленными в работах других авторов, а также с данными экспериментов.
Практическая значимость. Полученные в данной диссертационной работе результаты вносят важный вклад в развитие физических представлений о распространении и фокусировке МСВ с малыми волновыми числами в планарных структурах, содержащих намагниченную ФП, ограниченную по обе стороны диэлектриками с различной диэлектрической проницаемостью. Именно такие структуры применяются на практике при проектировании приборов спин-волновой электроники СВЧ.
Компьютерные программы, написанные автором для расчетов дисперсионных характеристик, могут быть успешно использованы для оптимизации квазиоптических аналогов СВЧ элементов на МСВ, для которых крайне важно точное определение характеристик МСВ в области малых волновых чисел, где нельзя использовать магнитостатическое приближение.
Расчет направления групповых скоростей и фокусировки ООМСВ и ПМСВ в области малых волновых чисел, реализуемый с помощью созданных автором программных средств, позволяет с достаточной для практики точностью моделировать форму преобразователя МСВ с заданными свойствами.
Определение ЭМП, возникающих при дифракции МСВ на щели в металлическом экране в ФДМ-структурах, создает основу для дальнейшего изучения дифракции МСВ на периодических решетках щелей, сравнимых по поперечным размерам с длиной волны МСВ, и изучению возможности создания на основе таких структур магнонных кристаллов.
Апробация диссертационной работы. Доклады и статьи по результатам диссертационной работы представлены на 14 научных конференциях, в том числе на следующих 9 международных научных конференциях:
Международная научная конференция «Излучение и рассеяние электромагнитных волн» (Таганрог, 2009 г., 2011 г.),
XVI международная конференции «Радиолокация и радиосвязь» (Москва -Фирсановка, 12-16 ноября 2008 г.),
XVII международная конференция «Магнетизм, дальнее и ближнее спин-спиновое взаимодействие» (Москва - Фирсановка, 20 - 22 ноября 2009 г.),
Международная школа «Хаотические автоколебания и образование структур» (Саратов, 4-9 октября 2010 г.),
XVIII , XIX и XX Международная конференция «Электромагнитное поле и материалы». (Москва - Фирсановка, 2010 г., 2011 г., 2012 г.),
Международная научно-техническая конференция «Актуальные проблемы электронного приборостроения» (Саратов, 19-20 сентября 2012 г.).
Публикации. По материалам диссертационной работы опубликовано 27 научных работ, из них 5 статей, из которых 4 - в рецензируемых изданиях перечня ВАК, рекомендованных для публикации материалов диссертации, и 22 работы -в сборниках материалов международных и всероссийских научных конференций.
Личный вклад соискателя. Автор принял непосредственное участие в разработке электродинамических методов расчета характеристик распространения, фокусировки и дифракции МСВ в плоскослоистых структурах, содержащих намагниченную ФП. Им разработаны описанные в работе методики и алгоритмы, созданы программы расчетов, сформулированы выводы по результатам работы. Автор провел все представленные в диссертации теоретические расчеты и исследования.
Структура и объем диссертационной работы. Диссертация состоит из введения, четырех глав, заключения и списка использованных источников. Она содержит 125 страниц основного текста, 41 рисунок и 14 страниц списка литературы из 129 наименований. Общий объем работы составляет 175 страниц.