Введение к работе
Актуальность работы
Результаты расследования причин и процессов развития аварий на нефтегазовых предприятиях, связанных с разгерметизацией оборудования и трубопроводов, свидетельствуют о том, что последствиями разгерметизации являются выброс в окружающее пространство газообразных взрывопожароопасных веществ, либо разлития нефтепродуктов на почву с последующим испарением легких фракций. В результате чего создаются благоприятные условия для образования топливовоздушных смесей и последующего их взрывного превращения и горения. В связи с этим, актуальной является задача адекватной оценки параметров вероятных пожаров и взрывов, зон разрушений различной степени тяжести для определения достаточности и эффективности принятых и рекомендуемых мер по снижению вероятности неблагоприятного развития и уменьшения масштабов аварий.
Исследованию воздействия пожаров и взрывов посвящено множество исследований и работ крупных ученых и специалистов, таких как: Зельдович Я.Б., Ландау Л.Д., Михельсон А.В., Гельфанд Б.E., Доломатов М.Ю., Едигаров А.С., Кац М.И., Козлитин А.М., Бард В.Л., Бесчастнов М.В., Мартынюк В. Ф., Махутов Н.А., Орленко Л.П., Селиванов В.В., Соловьев В.С., Кудрявцев Е.А., Кузеев И.Р., Либрович В.Б., Иванников В.П., Клюс П.П. и др.
Большинство существующих методов оценки плотности теплового потока от факела пламени и пожара разлития, а также методов оценки уровней давления во фронте ударной волны, приводящих к разрушениям различной степени тяжести, в частности к опрокидыванию аппаратов колонного типа, требуют решения сложных систем уравнений, либо используют табличные данные, полученные для ограниченного числа горючих смесей, не всегда учитывающие специфику нефтегазовых производств. Поэтому совершенствование методов определения последствий взрывного воздействия на находящееся в зоне аварии оборудование также является актуальной задачей.
Цель работы – повышение уровня пожарной и промышленной безопасности нефтегазовых технологических объектов на основе доступных и достоверных расчетных методов оценки величин воздействия и рисков пожара и взрыва.
Задачи исследования:
анализ информации о пожаро- и взрывоопасности объектов нефтегазовой отрасли и существующих методов определения плотности теплового потока от факела пламени и пожара разлития, оценки взрывобезопасности аппаратов колонного типа, оценки рисков аварий на трубопроводах нефти и газа;
совершенствование расчетных методов определения плотности теплового потока от факела пламени и от пожара разлития нефтепродукта;
разработка удобного в практическом применении метода оценки степени разрушения аппаратов колонного типа при внешнем ударно-волновом воздействии в зависимости от расстояния до эпицентра взрыва;
совершенствование метода определения риска от возможных аварий на трубопроводах, транспортирующих углеводородные смеси;
разработка программного комплекса расчета сил и средств тушения пожаров на основе предложенных методов оценки параметров пожара и взрыва.
Методы решения поставленных задач
Для решения поставленных задач использовались современные методы сбора и обработки информации, ее анализ и синтез, выявление закономерностей и противоречий, описание и обобщение, методы математического моделирования процессов формирования опасных факторов техногенных аварий, численного решения систем математических уравнений, их практическая проверка.
Научная новизна:
предложен научно обоснованный метод для расчета плотности теплового потока от цилиндрического факела пламени, применимый для факелов любой длины, пространственной ориентации, имеющих произвольную высоту расположения основания факела над поверхностью земли;
усовершенствован метод оценки плотности теплового потока от пожара разлития, позволяющий выполнять вычисления для разлитий любой площади;
разработан научно обоснованный метод определения зон слабых, сильных и полных разрушений аппаратов колонного типа при внешнем взрывном воздействии;
разработан метод расчета полей потенциального риска (в том числе риска пожара и взрыва) для линейных объектов – трубопроводов, который в отличие от существующих методов позволяет получать количественные результаты, находящиеся в хорошем соответствии с данными отраслевой статистики;
разработан в соавторстве и апробирован программный комплекс автоматизированного расчета сил и средств тушения пожаров по своим возможностям не имеющий аналогов.
На защиту выносятся:
метод расчета плотности теплового потока от произвольно ориентированного в пространстве цилиндрического факела пламени;
метод оценки плотности теплового потока от пожара разлития произвольной площади;
метод определения зон характерных взрывных деформаций и зон опрокидывания аппаратов колонного типа;
метод расчета полей потенциального риска линейных объектов;
алгоритм расчета сил и средств тушения пожаров и программный комплекс для его реализации.
Практическая значимость результатов работы.
Разработанные методы расчета плотности теплового потока от факела пламени и пожара разлития позволяют определять размеры зон с характерными значениями плотности теплового потока. Данные методы имеют практическое применение при размещении оборудования в пределах промышленных площадок, определении наиболее эффективной расстановки сил и средств на месте пожара, исходя из его размеров, характеристик оборудования, машин и стволов для тушения, типов горящих смесей.
Использование при проектировании нефтегазовых производственных комплексов метода определения зон характерных взрывных деформаций и зон опрокидывания аппаратов колонного типа позволяет получить рациональную схему размещения подобных аппаратов на территории промплощадок с целью достижения приемлемых значений уровней техногенного риска.
Методы расчета плотности теплового потока от факела пламени и пожара разлития, определения зон характерных взрывных деформаций и зон опрокидывания аппаратов колонного типа реализованы в программном комплексе «Огнеборец», который внедрен в ООО «Оренбурггазпожсервис» для расчета сил и средств тушения пожаров на объектах ООО «Газпром добыча Оренбург».
Методы расчета рисков летального поражения при авариях на трубопроводах, вошедшие в программный комплекс «Баязет», используются в ООО «ВолгоУралНИПИгаз» для оценки риска при разработке деклараций пожарной и промышленной безопасности, составлении планов ликвидации аварийных ситуаций, при определении размещения опасных производственных объектов нефтегазовой отрасли.
Внедрения подтверждены соответствующими актами. Получено свидетельство о государственной регистрации программы для ЭВМ "ОГНЕБОРЕЦ. Расчет сил и средств для тушения пожаров".
Апробация результатов работы. Основные научные положения и практические результаты работы неоднократно доложены, обсуждены, одобрены и рекомендованы к применению на международных и российских научно-технических конференциях и симпозиумах, включая: научно-практическую конференцию «Проблемы и методы обеспечения надежности и безопасности систем транспорта нефти, нефтепродуктов и газа» (г. Уфа, 2010 г.); 3-ю Общероссийскую научную конференцию: «Актуальные вопросы науки и образования» (г. Москва, 2010 г.); научно-техническую конференцию с международным участием: «Основные проблемы поиска, освоения и обустройства нефтегазовых месторождений и пути их решения» (г. Оренбург, 2010 г.); 4-ю молодежную научно-техническую конференцию: «Основные проблемы поиска, освоения и обустройства нефтегазовых месторождений и пути их решения» (г. Оренбург, 2010 г.).
Результаты работы удостоены премии Губернатора Оренбургской области в сфере науки и техники за 2010 год (г. Оренбург, 2011 г.); серебряной медали Оренбургской областной выставки научно-технического творчества молодежи «НТТМ-2011» (г. Оренбург, 2011 г.); золотой медали X Московского международного салона инноваций и инвестиций (г. Москва, 2010 г.).
Публикации. Основные результаты диссертационной работы отражены в 13 публикациях, включая 1 свидетельство о государственной регистрации программы для ЭВМ и 7 статей в журналах, рекомендованных ВАК Министерства образования и науки РФ для опубликования основных результатов диссертационных работ.
Объем и структура работы. Диссертационная работа состоит из введения, четырех глав, заключения, библиографического списка использованной литературы, включающего 110 наименований, 1 приложения. Работа содержит 140 страниц машинописного текста, 40 рисунков, 18 таблиц.