Введение к работе
Актуальность темы. В настоящее время к физике высокотемпературной сверхпроводимости привлечено внимание широкого круга специалистов. При этом особое значение приобрели высокотемпературные сверхпроводящие купратные соединения. Причиной этому послужили их необычные свойства, проявляемые как в сверхпроводящем, так и в нормальном состоянии. Среди которых можно выделить следующие:
1. высокая критическая температура сверхпроводящего перехода,
тс;
отличная от s-muna симметрия сверхпроводящего параметра порядка;
особенности фазовой диаграммы: близость антиферромагнитного и сверхпроводящего состояния, существование последнего в ограниченной области по концентрации носителей, наблюдаемая область псевдощелевого состояния при температуре выше критической Т > Тс;
наблюдаемое "нарушение" оптического правила сумм;
структура пик-провал-горб (peak-dip-hump) в спектрах фотоэмиссии с угловым разрешением (ARPES) и в туннельных спектрах, асимметрия туннельных спектров относительно нулевого напряжения;
малая величина интенсивности андреевского отражения по сравнению с обычными сверхпроводниками и образование андреевских поверхностных состояний;
7. статическая и динамическая структура страйпов; Основным структурным элементом слоистых купратных соединений являются медно-кислородные плоскости, атомные слои между которыми играют роль резервуаров, поставляющих при дырочном или электронном допировании избыточные носители в эти плоскости. Пренебрегая взаимодействием между медно-кислородными плоскостями, купраты рассматривают как квазидвумерные системы.
Накопленное к настоящему времени огромное количество экспериментальных данных требуют теоретической интерпретации. Однако ни одна из предложенных на настоящее время моделей не лишена недостатков и не позволяет объяснить всю совокупность экспериментальных фактов. Таким образом, несмотря на множество существующих моделей, развиваемых для объяснения свойств этого класса материалов, вопрос о механизме сверхпроводимости в них до сих пор остается открытым.
Развиваемая в последние годы модель сверхпроводящего спаривания с большим суммарным импульсом при отталкивательном взаимодействии (модель К-спаривания) позволяет дать качественную интерпретацию ключевым экспериментальным данным, а также устанавливает явную зависимость критической температуры от физических параметров системы.
Цель работы. Целью работы является интерпретация экспериментальных данных, несущих ключевую информацию о механизме сверхпроводимости купратов, а именно особенностям туннельных характеристик, оптической проводимости, андреевского отражения, фотоэмиссионной спектроскопии с угловым разрешением, что ведет к
более глубокому пониманию природы высокотемпературной сверхпроводимости.
В работе приведены аргументы, которые позволяют считать, что основным каналом спаривания в ВТСП купратах является спаривание с большим суммарным импульсом К (К « 2kF).
Научная новизна работы. Впервые в рамках модели сверхпроводящего спаривания с большим суммарным импульсом с отталкиватель-ным взаимодействием дана интерпретация форме и асимметрии туннельных характеристик, угловой зависимости спектральной плотности фотоэмиссионной спектроскопии с угловым разрешением, наблюдаемому "нарушению" оптического правила сумм, малой интенсивности андреевского отражения по сравнению с обычными сверхпроводниками.
Практическая значимость. Реализация огромных возможностей, связанных с применением высокотемпературных сверхпроводящих (ВТСП) материалов в энергетике, электронике и вычислительной технике может привести к резкому скачку научно-технического прогресса и экономики. Однако использование ВТСП соединений затруднено из-за низких значений критических параметров (критических токов, критических магнитных полей, критических температур). Результаты работы позволят глубже понять природу высокотемпературной сверхпроводимости и позволят наметить пути повышения значений критических параметров.
Основные положения, выносимые на защиту:
1. Благодаря особой зависимости сверхпроводящего параметра порядка от импульса относительного движения пары при сверхпроводя-
щем спаривании с большим суммарным импульсом туннельный спектр асимметричен относительно нулевого напряжения и имеет структуру "пик-провал-горб".
При спаривании с большим суммарным импульсом при отталки-вательном взаимодействии андреевское отражение оказывается подавлено.
Наблюдаемое "нарушение" оптического правила сумм связано с электрон - дырочной асимметрией, возникающей при спаривании с большим суммарным импульсом.
Достоверность результатов. Достоверность проведенных теоретических исследований обеспечивается строгим математическим обоснованием предлагаемых подходов и методов, а также сравнением с теоретическими и экспериментальными данными, известными в литературе.
Апробация работы. Основные результаты работы докладывались и обсуждались на международной конференции "Фундаментальные проблемы сверхпроводимости" (Звенигород) в 2004 и 2006 гг.; восьмой международной конференции "Materials and Mechanisms of Superconductivity High Temperature Superconductors VIII" (Дрезден. 2006 г.); международной зимней школе по физике полупроводников (С.Петербург. Зеленогорск 2005 г.).
По содержаниям исследований, составляющих содержание диссертации, опубликовано 7 научных работ, список которых приведен в конце реферата.
Структура и объем диссертации. Диссертация состоит из Введения и 4 глав, Заключения и списка литературы. Список литературы содержит 96 наименований.