Введение к работе
Актуальность работы. Ультразвуковая (УЗ) диагностика широко применяется в современной медицине. В своей практической деятельности при проведении исследований врачи УЗ диагностики встречаются с различными эхографическими артефактами (ложными изображениями), при этом возникает необходимость определения соответствия реальной картине отображаемого на экране сканера сигнала. С одной стороны, неправильная интерпретация артефактов может привести к ошибочной диагностике, с другой стороны, понимание физических причин, лежащих в основе происхождения ложных изображений, дает дополнительную диагностическую информацию и способствует успешному анализу полученных данных, тем самым повышая информативность УЗ исследования.
Под артефактами в УЗ диагностике понимают появление на изображении несуществующих структур, отсутствие существующих структур, неправильное расположение, яркость, очертания и размеры структур. Артефакты можно разделить на две основные группы: аппаратурные артефакты, возникающие вследствие технических причин, в том числе, из-за несовершенства аппаратуры (например, алайсинг-артефакт, артефакт ложного отсутствия потока, артефакт растекания цвета, артефакт широкого луча), и физические артефакты, связанные с взаимодействием УЗ луча и биологической ткани (например, артефакт акустической тени, артефакт мерцания, зеркальный артефакт, артефакт вспышки, артефакт поглощения, артефакт «псевдопоток»).
К физическим артефактам относят артефакт «псевдопоток» (ложный или некровяной поток), состоящий в визуализации движения объекта в режиме цветного и энергетического допплера, возникающего в неоднородных жидких средах вследствие внешних воздействий.
Исследования артефакта «псевдопоток», проводимые Камбеллом С, Кал-линаном Дж., Рубенсом Д., Громовым А.И., Кубовой СЮ. и др., показали возможность его использования для диагностирования различных жидкостных образований, в медицинской практике.
Артефакт «псевдопоток» имеет место при движении под действием УЗ луча взвешенных в жидкости дисперсных частиц (скопления пигментной взвеси или детрита, лизированная кровь, ранее излившаяся в просвет жидкостного образования) или газовых пузырьков (вводимые в кровоток контрастные вещества и пузырьки, возникшие при газовой эмболии). Причинами возникновения артефакта являются радиационное давление, действующее на неоднородность; тепловые эффекты, вызванные воздействием УЗ излучения; кавитация, возникающая преимущественно в газосодержащих жидкостях. Основной причиной возникновения артефакта «псевдопоток» является действие силы радиационного давления на неоднородности, находящиеся в жидкой среде в УЗ поле. Также большое значение имеют тепловые эффекты, которые существенно усиливаются при распространении УЗ волны в неоднородных средах, что может вызвать локальный перегрев тканей. Степень движения неоднородностей в жидкости под действием ультразвука, а следовательно, и выраженность артефакта на эк-
ране сканера, зависит от уровня интенсивности УЗ излучения. Снижение уровня интенсивности УЗ излучения может привести к исчезновению отображения движения на экране сканера. Увеличение интенсивности ведет к повышению риска возникновения механических повреждений и локального перегрева биологических тканей. Поэтому одной из актуальных проблем современной медицинской диагностики является оценка уровня интенсивности УЗ излучения и его распределения в пространстве. Разработанные к настоящему времени методы измерения интенсивности УЗ излучения не обладают достаточной чувствительностью к диагностическому ультразвуку.
На выраженность артефакта влияют физические свойства среды, в том числе и упругие. В настоящее время активно развивается технология улучшения визуализации неоднородностей мягких тканей по их сдвиговым характеристикам - метод эластографии. Несмотря на множество схем реализации метода эластографии, они не позволяют количественно определять модули упругости, а лишь повышают контрастность изображения, к тому же устройство эластографии является довольно дорогостоящим оборудованием. Использование артефакта «псевдопоток», вызванного действием внешнего механического давления, для реализации метода эластографии имеет большую практическую значимость для дифференцирования образований и окружающей их среды.
Из указанного следует, что изучение механизмов возникновения артефакта «псевдопоток» в зависимости от параметров УЗ волн и характеристик неоднородных сред является актуальным и позволяет оценить безопасность и повысить информативность методов за счет разработки новых методов УЗ диагностики.
Работа выполнялась в рамках федеральной целевой программы НК-767П «Научные и научно-педагогические кадры инновационной России» на 2009-2013 годы, тема НИР «Исследование физических механизмов образования «псевдопотоков» в ультразвуковых допплерографических системах»; студенческого гранта Американского акустического общества, работа «Закономерности возникновения артефакта ультразвуковой допплерографии «псевдопоток» (2011 г.); государственного задания Министерства образования и науки РФ ФГБОУ ВПО «ИжГТУ имени М.Т. Калашникова» на 2012 - 2014 годов в части проведения научно-исследовательских работ, проект № 7.1378.2011 «Исследование механизмов взаимодействия физических полей с биосистемами и разработка биомедицинских технологий повышения безопасности, эффективности и информативности медицинских приборов и систем»; проекта ПСР/М2/Н2.5/МВВ Программы стратегического развития ФГБОУ ВПО «ИжГТУ имени М.Т. Калашникова» на 2012-2016.
Цель работы. Исследование физических закономерностей возникновения артефакта «псевдопоток» для повышения информативности и безопасности УЗ диагностики.
Для реализации цели в работе решаются следующие задачи:
1. Моделирование артефакта «псевдопоток» на основе сил радиационного давления.
-
Теоретические и экспериментальные исследования закономерностей возникновения артефакта «псевдопоток» в зависимости от свойств неоднородных жидких сред, параметров УЗ излучения.
-
Исследование теплового действия УЗ излучения медицинского оборудования в неоднородных средах.
-
Разработка способа оценки уровня интенсивности УЗ излучения медицинского оборудования с использованием артефакта «псевдопоток» и устройства для его реализации.
-
Разработка способа оценки упругих свойств мягких тканей с использованием артефакта «псевдопоток» и устройства для его реализации.
Объект исследования: физический артефакт «псевдопоток», связанный с взаимодействием УЗ луча и биологической ткани.
Предмет исследования: физические механизмы возникновения артефакта «псевдопоток», основанные на силах радиационного давления; тепловое действие ультразвука в неоднородных средах, способы эластографии и оценки интенсивности УЗ излучения на основе использования артефакта «псевдопоток».
Методы и средства исследования
При исследованиях использованы основные положения теории гидродинамики, теории акустики и теории упругости, методы математического моделирования на ЭВМ, реализованные в программной среде MathCAD, экспериментальные исследования на УЗ медицинском диагностическом и терапевтическом оборудовании с использованием радиотехнической аппаратуры.
Новые научные результаты
-
Предложена физико-математическая модель возникновения артефакта УЗ допплерографии «псевдопоток», основанная на совместном действии на неоднородность силы радиационного давления, выталкивающей силы и силы тяжести, учитывающая влияние физических свойств и размеров неоднородностей и параметров УЗ излучения.
-
Теоретически и экспериментально исследованы основные механизмы возникновения артефакта «псевдопоток» и тепловые механизмы воздействия УЗ излучения на неоднородности в виде сильно- и слабосжимаемых и несжимаемых частиц.
-
Разработан способ оценки интенсивности УЗ излучения медицинского оборудования и визуализации ее распределения в пространстве, основанный на измерении скоростей движения пузырьков фиксированных размеров, или размеров пузырьков, находящихся в равновесии в жидкости в условиях УЗ воздействия, и устройство для его реализации.
-
Разработан способ оценки упругих свойств неоднородности, основанный на определении ее виброскорости, вызванной внешним механическим воздействием с оптимизированными параметрами, и устройство для его реализации.
Достоверность и обоснованность полученных в работе результатов подтверждены корректным использованием методов теории гидродинамики, теории акустики и теории упругости; согласованием теоретических и эксперимен-
тальных результатов; воспроизводимостью результатов экспериментальных исследований.
Практическая ценность работы состоит в следующем:
-
Разработанные модели и выявленные закономерности возникновения артефакта «псевдопоток» позволяют повысить информативность УЗ исследования за счет дифференциации неоднородных образований и оценки их упругих модулей.
-
Теоретические и экспериментальные исследования коэффициентов поглощения УЗ волн в неоднородных средах позволили рассчитать тепловые индексы и обосновать предельно допустимые уровни интенсивности и времени озвучивания при проведении УЗ исследований, особенно в случае использования контрастных веществ.
-
Разработанный способ оценки интенсивности УЗ излучения обладает расширенными функциональными возможностями за счет повышения чувствительности, минимизации искажений акустического поля, вызванных наличием мишени радиометра, возможности измерения интенсивности при наклонном падении УЗ волн.
-
Разработанный способ эластографии позволяет количественно оценить упругие модули неоднородности, увеличить контрастность изображения, и может быть использован в качестве дополнительного способа УЗ доплеровской диагностики неоднородных неподвижных сред.
-
Разработанный способ и устройство оценки упругих свойств ткани прошли апробацию в условиях БУЗ УР «ГКБ №2 МЗ УР» на фантомах неоднородных сред с использованием УЗ диагностического оборудования. Результаты исследований внедрены в учебный процесс подготовки бакалавров по направлению 200100 «Приборостроение» в виде лабораторных работ по курсу «Акустические методы и средства медицинской диагностики и лечения».
Основные научные положения, выносимые на защиту
-
Физико-математическая модель появления артефакта УЗ допплерогра-фии «псевдопоток», основанная на воздействии сил радиационного давления, и исследованные механизмы его возникновения в неоднородных средах с учетом их физических свойств и геометрических размеров неоднородностей при различных параметрах УЗ излучения.
-
Способ расчета теплового индекса в неоднородных средах в дуплексном режиме УЗ исследования.
-
Способ оценки интенсивности УЗ излучения, основанный на определении скорости движения и размеров пузырьков в жидкости под воздействием УЗ излучения.
-
Способ оценки упругих свойств неоднородности, основанный на измерении виброскорости неоднородности, вызванной дополнительными механическими колебаниями, в режиме УЗ допплерографии.
Апробация работы. Основные результаты исследований были доложены и обсуждались на 15-й Всероссийской межвузовской научно-технической конференции «Микроэлектроника и информатика-2008» (Зеленоград, 2008г.); Все-
российской научной конференции «Наука. Технологии. Инновации» (Новосибирск, 2008г.); Конкурсе инновационных проектов программы «У.М.Н.И.К.» (Новосибирск, 2008г.); 2-ой Международной студенческой научно-технической конференции «Новые направления развития приборостроения» (Минск, 2009г.); II форуме молодых ученых, организованном в рамках 4-й Международной конференции «Технические университеты: интеграция с европейскими и мировыми системами образования» (Ижевск, 2010г.); Республиканском конкурсе «Молодой изобретатель Удмуртской Республики» (Ижевск, 2010г.); XXII и XXV Сессии Российского акустического общества (Москва, 2010г., Таганрог, 2012г.); V, VI и VII Всероссийской научно-технической конференции «Приборостроение в XXI веке. Интеграция науки, образования и производства» (Ижевск, 2008г., 2010г. и 2011г.); I и II Всероссийской научно-технической конференции «Измерение, контроль и диагностика» (Ижевск, 2010г. и 2012г.); Научно-технической конференции «Молодые ученые - ускорению научно-технического прогресса в XXI веке» (Ижевск, 2011г.); молодежном конкурсе инновационных работ «Инновационное стремление» (Ижевск, 2012г.) и др. Результаты работы отмечены 19 дипломами различного уровня.
Публикации. Основные теоретические и практические результаты диссертации опубликованы в 24 печатных работах, среди которых 3 статьи в ведущих рецензируемых изданиях, рекомендованных в действующем перечне ВАК, 11 статей в сборниках трудов и материалах конференций и 8 тезисов конференций различного уровня, 1 учебно-методическое издание, 1 заявка на полезную модель.
Структура и объем диссертации. Диссертационная работа состоит из введения, четырех глав, заключения, списка литературы, включающего 192 наименования, 11 приложений. Основная часть диссертации изложена на 152 страницах машинописного текста, содержит 91 рисунок и 17 таблиц.