Введение к работе
Актуальность темы. Диссертация охватывает широкий круг вопросов, объединенных стержневой проблемой: равновесие, движение и устойчивость различных диссипативных систем, в которых поверхностные (капиллярные) силы являются определяющими факторами изучаемых процессов. Данную проблематику традиционно относят к межфазной гидродинамике – науке, теоретический фундамент которой заложил более ста лет назад Дж. В. Гиббс своей работой «О равновесии гетерогенных веществ». Развитие идей Гиббса привело к созданию физико-химической гидродинамики, из которой выделилась более узкая область – гидродинамика межфазных поверхностей, лежащая на пересечении традиционной гидродинамики с коллоидной химией и другими физико-химическими науками.
В последнее время межфазная гидродинамика развивается особенно бурно. Причин тому несколько. Во-первых, главной причиной является использование возможностей, которые открылись с появлением компьютеров. Стали доступными эксперименты и расчёты, ранее немыслимые из-за сложности; значительно расширился арсенал математических средств.
Во-вторых, научно-техническая революция, бурное развитие техники ставят перед исследователями всё более сложные задачи. Гетерогенные системы – едва ли не основные объекты современной техники. Потребности экологии, металлургической, нефтяной, химической отраслей промышленности вынуждают физиков переходить к изучению сложных систем в самых разнообразных условиях. Особое внимание к исследованиям по данной тематике обусловлено разработками в области космических технологий и систем обеспечения орбитальных станций. В биологии капиллярные эффекты изучаются в связи с движением бактерий и клеточных микрообъектов; в медицине – в контексте проблем распространения сурфактантов при легочных заболеваниях и заболеваниях крови; в математике ветвление равновесных форм и конвективная неустойчивость, вызванная капиллярными эффектами, дают новые примеры для синергетики. В общем плане следует исходить из того, что человечество по мере расходования полезных ископаемых и совершенствования техники все интенсивнее должно переходить к микро - и нанотехнологиям, когда поверхностная энергия полезного материала становится важнейшим фактором.
В-третьих, изучение взаимодействия различных по физической природе сил определяется логикой развития самих естественных наук. Изучаемые в работе структуры относятся к открытым системам. Больцман был в своё время первым и почти единственным, кто понял, что изучение неравновесных процессов в открытых физических системах является одной из важнейших задач естествознания. Принципиально новым шагом в этом направлении была развитая Эйнштейном, Смолуховским и Ланжевеном теория броуновского движения, которая стала рабочим инструментом при рассмотрении многих физических явлений.
Благодаря сложности открытых систем в них возможно образование различного рода структур, для самоорганизации или деградации которых необходимо наличие диссипации. Чтобы подчеркнуть это обстоятельство, И. Пригожин ввёл термин «диссипативные структуры». Среди них, однако, к настоящему времени хорошо изученными можно считать только автоколебания в генераторах, ячейки Бенара и автоволны на поверхности жидкости – соответственно временные, пространственные и пространственно-временные диссипативные структуры.
Цель работы – экспериментальное и теоретическое исследование гидродинамических эффектов в задачах межфазной конвекции с точки зрения возникновения диссипативных структур, а также их качественное и количественное объяснение при помощи соответствующих математических моделей.
Научная новизна. В работе впервые рассмотрены малоизученные или неизвестные ранее диссипативные структуры, в которых конкуренция поверхностных и объёмных сил различной физической природы приводит к появлению новых структур. Показано, что конечным этапом их эволюции может стать как самоорганизация, так и наступление физического или динамического хаоса. Для этой цели впервые:
- теоретически и экспериментально исследованы процессы слияния капель в невесомости (техника Плато) и капель, плавающих на горизонтальной поверхности жидкости;
- выполнены эксперименты по изучению явления кумуляции при ударе капли о свободную поверхность другой или той же самой жидкости, заполняющей неглубокую кювету с наклонным к горизонту дном, построена математическая модель явления;
- для определения условий, в которых линейное натяжение превалирует над поверхностным, проведена серия экспериментов с каплями насыщенного водой четырёххлористого углерода, удерживаемого капиллярными силами на поверхности воды, предварительно насыщенной CCl4;
- проведены экспериментальные и теоретические исследования разрушения пузырей, изучена зависимость от времени средних размеров плёнки, остающейся от пузыря непосредственно перед завершением процесса;
- проведены эксперименты по изучению явления неслияния соприкасающихся капель, которые доказывают, что причиной эффекта является втягивание воздуха в зазор между ними;
- изучены типичные неустановившиеся и стационарные течения во вращающихся жидкостях. Теоретически исследовано влияние вращения на конвективные движения индивидуальных жидкостей и растворов, заполняющих сферическую полость в неоднородно нагретом твёрдом массиве, в котором на бесконечности поддерживается постоянный градиент температуры;
- экспериментально и теоретически изучен дрейф шаров во вращающихся жидкостях. Получены экспериментальные данные зависимости скорости дрейфа шаров от числа Рейнольдса, определённого по угловой скорости вращения и радиусу шара;
- результаты проведенных экспериментов по неустойчивости стекающих струй к меандрированию проанализированы с помощью метода, предложенного Ланжевеном для анализа движения броуновской частицы. Показано, что единственным параметром, формирующим режим, может служить отношение параметра Ланжевена D (коэффициент диффузии в пространстве скоростей) к диссипативному фактору g. Экспериментально и аналитически методом преобразования Лапласа определена функция распределения, которая позволяет предсказывать вероятности меандрирования стекающей струи любой длины;
- в группе задач по изучению пространственно-временных диссипативных структур решена задача о термокапиллярной конвекции от линейного источника тепла и проведено исследование полученного решения на устойчивость по отношению к разного рода возмущениям.
Достоверность результатов диссертационной работы обеспечивается количественным совпадением полученных в работе теоретических зависимостей с результатами экспериментов, специально поставленных автором диссертации, так и с данными других исследователей; применением стандартных аналитических, асимптотических и численных методов; совпадением асимптотических и численных результатов; использованием различных геометрических и физических моделей исследуемых процессов и состояний и сравнением результатов с известными теориями.
Научная и практическая значимость результатов диссертационной работы заключается в том, что в ней решены многочисленные и разнообразные по физическому содержанию задачи, интересные как в плане поиска новых примеров ветвления равновесных состояний или конвективной неустойчивости, так и в чисто практическом применении результатов в межфазной тензиометрии, наземных и космических технологиях. Разработанная методика и результаты используются в научно-исследовательской работе в Пермском государственном университете, в Пермском педагогическом университете, Институте механики сплошных сред и Институте экологии и генетики микроорганизмов УрО РАН, в Ивановском государственном университете, в Мадридском политехническом университете (Испания), в университетах городов Лавборо и Эдинбург (Великобритания), а также в учебном процессе в Пермском государственном университете в лекциях, лабораторных практикумах, а также включены в учебные пособия по курсам «Межфазная гидродинамика», «Гидромеханика невесомости» и «Динамика жидкостей с особыми свойствами».
Диссертационная работа выполнялась в рамках разрабатываемой кафедрой общей физики Пермского государственного университета темы «Конвекция и теплообмен в ламинарном, переходном и турбулентном режимах; влияние осложняющих факторов на конвективную и гидродинамическую устойчивость». Исследования являются также составной частью Государственной программы поддержки ведущих научных школ (гранты № 96-15-96084 и № 00-15-00112), Международного научно-технического проекта «Конвективные явления и процессы тепломассопереноса в условиях невесомости и микрогравитации», Федеральной целевой программы «Интеграция» (грант № 98-06), программы «Университеты России» (направление II, «Неравновесные процессы в макроскопических системах»), проектов «Гидродинамическая неустойчивость и дрейф жидких деформируемых включений в макрогетерогенных системах» Минобразования РФ (1999, 2001 гг.). Работы выполнялись при финансовой поддержке грантов РФФИ 96-01-01738, 98-010-00507, 06-01-72031, 06-08-00752, 07-01-96040 и 09-01-00846, грантов INTAS-94-529 и INTAS-99-01505, гранта CRDF PE-009-0.
Апробация работы. Результаты исследований докладывались на IX Школе-семинаре «Нелинейные задачи теории гидродинамической устойчивости" (Москва, 1993), II International Conference on Nonlinear Mechanics (Beijing, China, 1993), на третьей международной конференции «Современные проблемы электрогидродинамики и электрофизики жидких диэлектриков» (Санкт-Петербург, 1994), International Workshop «Non-gravitational Mechanisms of Convection and Heat/mass Transfer» (Zvenigorod, 1994), IX European Symposium «Gravity-depended Phenomena in Physical Sciences» (Berlin, Germany, 1995), на XII и XVI зимних школах по механике сплошных сред (Пермь, 1999, 2009), на XIII International Conference on Dielectric Liquids (Nara, Japan, 1999), II International Workshop “Two-Phase Systems for Ground and Space Applications” (Kyoto, Japan, 2007), III International Symposium on Physical Sciences in Space (Nara, Japan, 2007), на Пермском городском гидродинамическом семинаре им. Г.З. Гершуни и Е.М. Жуховицкого, научном семинаре Института механики сплошных сред УрО РАН (рук. акад. РАН В.П. Матвеенко), семинаре по прикладной механике сплошных сред Института проблем механики РАН.
Публикации. Основные результаты диссертации опубликованы в 22 работах, в том числе монографии.
Личный вклад автора. Работы [1, 2, 5, 7, 18, 21] выполнены автором лично, В работе [3] автору принадлежит математическая модель наблюдаемых явлений, аналитические и численные расчеты, физическая интерпретация результатов; в работах [4, 9-13] – постановка задачи, аналитические и численные расчеты, интерпретация результатов, в работе [6] – участие в измерениях, обработке экспериментальных результатов, в работе [8] – участие в постановке задачи, измерения, обработка результатов, в работах [14, 16, 17, 19, 20, 22] – экспериментальные и теоретические результаты, участие в обработке результатов, их интерпретация.
Структура и объём работы. Диссертация состоит из введения (первая глава), четырех глав с изложением результатов, шести приложений, заключения и списка цитированной литературы, включающего 179 наименований. Общий объем диссертации 435 страниц, включая 121 рисунок и 4 таблицы.
Автор благодарен Ю.К. Братухину и С.О. Макарову за постоянное внимание к работе, полезные обсуждения и ценные советы.