Введение к работе
Актуальность темы исследования. В процессе эксплуатации оборудования и изделий машиностроения установлено, что разрушение большого числа объектов происходит при нагрузках ниже предела текучести. В результате многократного воздействия циклических нагрузок на материал происходит изменение его структуры и появляются микроскопические нарушения сплошности, которые впоследствии могут увеличиться в размерах и перерасти в очаг зарождения и развития трещины. Этому способствует многократное чередование областей с изменяющимися напряжениями. Циклические нагрузки воздействуют на большинство эксплуатирующихся изделий: мостовые конструкции, авто- и железнодорожный транспорт, металлообрабатывающие станки и инструмент, прессы, летательные аппараты, подъемные механизмы, трубопроводы и т.д.
Сопротивление материала усталости в большой степени обусловлено структурой, напряженным состоянием и качеством поверхностного слоя. Отрицательное воздействие оказывают напряжения растяжения и многочисленные концентраторы напряжений: металлургические (неметаллические включения, поры, ликвация, усадочные раковины), технологические (повышенная шероховатость, погрешности механической обработки), конструктивные (отверстия, выборки, проточки, переходные участки между сечениями детали с различной площадью) и эксплуатационные (коррозионные повреждения, углубления, трещины).
Сложность изучения и прогнозирования усталостного разрушения обусловлена тем, что зарождение и развитие трещин происходит в локальных объемах изделия, определяемых структурными составляющими материала и их ориентацией относительно действующих номинальных нагрузок. Это значительно усиливает вероятностный характер возникновения микротрещин, способных к дальнейшему развитию.
В сварных машиностроительных конструкциях имманентно присутствуют не только указанные выше напряжения, но и технологически заложено различие структур наплавленного, свариваемого (основного) металла, а также зоны термического влияния. Кроме того, при сварке дополнительно формируются остаточные напряжения и существует опасность возникновения закалочных структур, что может привести к образованию трещин. Поэтому исследование усталости сварных конструкций и их элементов приобретает особую актуальность. Тем более при решении современных задач машиностроения по снижению материалоемкости машин, интенсификации, повышению надежности и ресурса их эксплуатации.
Степень разработанности темы исследования. В нашей стране и за рубежом выполнены и опубликованы многочисленные работы по усталости сварных соединений. Показано влияние способа сварки, типа соединения, остаточных напряжений, марок свариваемых и сварочных материалов, условий эксплуатации, конструктивных форм и размеров. Однако усталостные исследования с точки зрения структуры шва, зоны термического влияния и свариваемого материала немногочисленны. Кроме того, большинство усталостных испытаний проведено более 20 лет назад при нагрузках с асимметрией цикла от минус 0,8 до 0,5, что не всегда соответствует реальным условиям эксплуатации сварных машиностроительных конструкций. Но поскольку, в последние годы, технологии изготовления металла и проката усовершенствованы, используются новые оборудование, материалы и технологии сварки, это ограничивает применение результатов ранее выполненных исследований.
Цель работы. Целью диссертационной работы является выявление характера разрушения и изменения свойств сварных соединений низколегированных сталей 09Г2С, 17Г1С-У и 16Г2АФ в процессе циклических растягивающих нагрузок.
Задачи исследования:
-
Выполнить усталостные испытания при максимальных растягивающих нагрузках, составляющих 80 и 60 % от условного предела текучести сталей 09Г2С, 17 Г1С-У и 16Г2АФ.
-
Рассчитать уравнения регрессии между циклической долговечностью материала и параметрами испытаний. Определить количество циклов до разрушения сварного соединения с момента появления первых трещин и оценить влияние структуры стали на их величину Установить степень влияния качества сварного шва на количество циклов до разрушения.
-
Провести фрактографические исследования изломов с целью выявления особенностей зарождения и распространения усталостных трещин.
-
Определить механические свойства сварных образцов с различной степенью накопленных усталостных повреждений.
-
Разработать методику оценки остаточного ресурса эксплуатации металлоконструкций с учетом условий нагружения.
Научная новизна:
-
Получен новый экспериментальный материал о циклической долговечности сварных соединений низколегированных сталей 09Г2С, 17Г1С-У и 16Г2АФ при знакопостоянном нагружении с асимметрией цикла 0,8 - 0,9. На основе результатов испытаний рассчитаны квадратичные уравнения корреляции числа циклов до разрушения сталей от максимального напряжения растяжения и размаха напряжений цикла, которые позволяют оценить циклическую долговечность сварной конструкции при заданных параметрах испытаний (или условий эксплуатации).
-
Установлено, что наличие сварного шва уменьшает количество циклов нагружения до разрушения стали 09Г2С в 1,5 - 12 раз в зависимости от условий испытаний и дефектности шва, стали 16Г2АФ - в 1,5 - 2,0 раза, а стали 17Г1С-У в 1,15 - 1,8 раза по сравнению с бесшовными образцами. Циклическая долговечность значительным образом зависит от размеров и формы допускає-
мых нормативно-технической документацией сварочных дефектов, являющихся концентраторами напряжений. Определено количество циклов до разрушения исследованных сталей с момента появления первых трещин.
-
Установлена ямочная структура поверхности излома, формирование которой обусловлено глобулярными образованиями. По результатам усталостных испытаний стали 17Г1С-У установлено расслоение поверхности разрушения как на сварных, так и на бесшовных образцах. На изломах сталей 09Г2С и 16Г2АФ образуются мелкие вторичные трещины длиной 30-150 мкм.
-
Выявлена «ступенька» повышенной микротвердости величиной 780 -880 МПа вблизи зоны термического влияния, соответствующая области накопления усталостных повреждений в процессе испытаний. Рентгеноструктурным анализом и просвечивающей электронной микроскопией установлено увеличение плотности дислокаций в структуре на участке «ступеньки».
-
Разработаны алгоритм и методика расчета остаточного ресурса эксплуатации металлоконструкции, рассчитаны и построены графики для их осуществления.
Практическая значимость:
-
Методика и графики для определения остаточного ресурса мостовых конструкций приняты в ООО «Тюменьстальмост» (акт внедрения от 01.11.2013).
-
Разработаны и запатентованы конструкции зажимного устройства (патент РФ № 112083) и многопозиционных образцов для испытаний (патенты РФ № 123953 и № 124803).
-
Результаты исследования используются при подготовке магистров по направлению 150100 «Материаловедение и технологии материалов», на курсах повышения квалификации специалистов машиностроительного профиля, а также в учебном пособии «Испытания сварных соединений деталей и конструкций нефтегазового оборудования».
Методология и методы исследования. Использовался комплекс методов исследования, включающий: спектральный и рентгенофлюоресцентный анализ химического состава, световую микроскопию, растровую и просвечивающую электронную микроскопию, рентгеноструктурный анализ, механические испытания, а также математический анализ уравнений корреляции.
Положения, выносимые на защиту:
-
Экспериментальный материал о циклической долговечности сварных соединений низколегированных сталей 09Г2С, 17Г1С-У и 16Г2АФ при знакопостоянном нагружении с асимметрией цикла 0,8 - 0,9.
-
Результаты математического анализа усталостных испытаний и полученные квадратичные уравнения корреляции числа циклов до разрушения сталей от максимального напряжения растяжения и размаха напряжений цикла.
-
Влияние сварного шва и его дефектности на циклическую долговечность.
-
Особенности изменения структуры и механических свойств различных зон сварного соединения под воздействием переменных нагрузок.
-
Алгоритм, методика и графики для расчета остаточного ресурса эксплуатации металлоконструкции.
Степень достоверности результатов. Достоверность результатов обусловлена использованием современных методик, позволяющих комплексно оценить полученные результаты. Статистическая обработка подтвердила, что результаты усталостных испытаний и полученные уравнения регрессии не выходят за пределы 95 %-го доверительного интервала.
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на Всероссийской научно-практической конференции «Проблемы эксплуатации систем транспорта» (Тюмень, 2009); Всероссийской научно-технической конференции «Инновационное нефтегазовое оборудование: проблемы и решения» (Уфа, 2010); V и VI Международных научно-технических конференциях «Современные проблемы машиностроения» (Томск,
2010, 2011); Международной научно-практической конференции «Проблемы функционирования систем транспорта» (Тюмень, 2010); Международных научно-технических конференциях «Нефть и газ Западной Сибири» (Тюмень, 2011, 2013); 15-й международной научно-практической конференции «Технологии упрочнения, нанесения покрытий и ремонта: теория и практика» (С-Петербург, 2013) и на ежегодных Всероссийских научно-технических конференциях «Новые технологии - нефтегазовому региону» (Тюмень, 2010 - 2012).
Публикации. По теме диссертации опубликовано 4 статьи в рецензируемых журналах, рекомендованных ВАК РФ, 12 в других изданиях, получено 3 патента на полезную модель.
Структура и объем работы. Диссертация состоит из введения, трех глав, заключения, приложения, списка литературы, включающего 106 наименований, и содержит 115 страниц, 39 рисунков, 9 таблиц.