Введение к работе
Актуальность работы. Математические модели представляют собой формализованное представление системы с помощью математических соотношений, отражающих процесс ее функционирования. При известной структуре модели системы процедура идентификации ее параметров основывается на обработке информации о входных и выходных данных.
Весомый вклад в разработку методов структурной и параметрической идентификации внесли Цыпкин Я.З., Льюнг Л., Демиденко Е.З., Кендалл М., Острем К.Ю., Шметтерер Л. и др. Проводя классификацию методов оценивания параметров линейных динамических объектов, можно отметить, что существуют две группы методов. При использовании первой группы методов требуется априорная информация о законах распределения исследуемых величин (наибольшее теоретическое значение и применение имеет метод максимального правдоподобия). При использовании второй группы методов знание функций распределения не требуется (классический метод наименьших квадратов - МНК). Однако при наличии аддитивных автокоррелированных помех в сигналах применение классических методов идентификации существенно затруднено. Это открывает различные направления научного исследования проблемы, одно из которых – модификация стандартных методов оценивания параметров многомерных линейных динамических систем.
В частности, предлагаемые методы оценивания могут быть использованы при решении задач прогнозирования многомерных случайных процессов. В теории анализа состояния человека в монографии А.В. Богомолова «Диагностика состояния человека: математические подходы» указывается на возможность описания функционального состояния человека многомерной линейной динамической моделью.
В соответствии с вышеизложенным, актуальной является задача разработки критерия и численных методов определения состоятельных оценок параметров многомерной стохастической модели при наличии автокоррелированных помех в переменных, а также создание прикладного программного обеспечения, реализующего численные алгоритмы и позволяющего производить расчет и прогноз гемодинамических показателей работника железнодорожного транспорта с целью диагностики его функционального состояния.
Целью диссертационной работы является разработка критерия, численного метода и программного обеспечения для состоятельного оценивания параметров многомерных линейных динамических моделей при отсутствии информации о законах распределения автокоррелированных помех наблюдений.
В соответствии с поставленной целью работы основными задачами исследований являются:
анализ существующих методов оценивания параметров многомерных линейных динамических моделей при наличии помех в переменных;
разработка критерия для определения состоятельных оценок параметров многомерной стохастической модели при наличии автокоррелированных помех во входных и выходных сигналах;
разработка численного метода определения матриц оценок параметров, основанного на использовании критерия в виде отношения двух квадратичных форм, в котором числитель записывается в виде классического МНК;
создание на основе предложенного критерия и алгоритма программного обеспечения (ПО) для оценки и прогноза основных показателей состояния здоровья работников локомотивных бригад с целью обеспечения безаварийности перевозочного процесса.
Методы исследования. В работе использованы:
математическое моделирование;
элементы математической статистики, теории идентификации, теории матриц, линейной алгебры;
методы системного анализа;
системное и объектно-ориентированное программирование.
Достоверность и обоснованность научных положений подтверждается соответствием результатов теоретических исследований экспериментальным тестам и расчетам математического моделирования.
Научная новизна диссертационной работы заключается в разработке численных методов состоятельного оценивания параметров многомерной стохастической модели на основании критерия, обобщающего ОМНК для многомерных линейных динамических систем при наличии автокоррелированных помех.
Научная новизна результатов работы заключается в следующем:
в качестве критерия для определения параметров многомерной линейной динамической модели при наличии автокоррелированных помех в сигналах доказан и применен критерий, обобщающий ОМНК и выраженный в виде отношения двух квадратичных форм;
разработаны численные методы определения матриц оценок параметров на основе минимизации отношений двух квадратичных форм, сводящиеся к многократному решению систем линейных алгебраических уравнений;
на основе разработанного критерия и численных методов создано программное обеспечение с графическим представлением результатов построения модели и прогноза гемодинамических показателей работников транспорта.
Практическая значимость. Повышение, на базе созданных математических моделей, надежности «человеческого фактора» на транспортных предприятиях путем разработки программных средств и рекомендаций в организации технологии выделения «группы повышенного риска» по возможности развития патологических состояний, внезапного ухудшения самочувствия и неадекватного реагирования. В основе предлагаемого способа достоверного определения «группы повышенного риска» - программный мониторинг численных показателей медицинских параметров и прогноз функционального состояния водителя транспортного средства. Определение «группы повышенного риска» производится на основе сравнения значений показателей, вычисляемых по моделям, с индивидуальными нормами.
Реализация и внедрение результатов. Результаты диссертационной работы использованы на Куйбышевской железной дороге при эксплуатации терминалов АСПО в локомотивных депо в следующем виде:
применение авторских методик и рекомендаций в использовании АСПО на базе комплексов КАПД-01-СТ математических моделей для обработки статистических выборок измерений;
статистическая обработка гемодинамических показателей и мониторинг функционального состояния работников железнодорожного транспорта при предрейсовых осмотрах;
использование разработанного в диссертационной работе программного обеспечения для определения параметров линейной динамической модели при оценке и прогнозе показателей состояния здоровья работников локомотивных бригад.
Результаты по разработке и исследованию алгоритмов оценивания параметров внедрены в учебный процесс Самарского государственного университета путей сообщения на кафедре «Мехатроника в автоматизированных производствах» и рекомендованы для внедрения кафедрам с техническим уклоном с целью повышения эффективности и качества учебного процесса.
Основные положения, выносимые на защиту:
-
Критерий, обобщающий ОМНК и позволяющий получать состоятельные оценки параметров многомерной по входу и выходу линейной динамической модели при наличии автокоррелированных помех в переменных без знания законов распределения этих помех.
-
Численный метод определения параметров многомерных линейных разностных уравнений на основании разработанного критерия минимизации отношения двух квадратичных форм относительно матриц параметров.
-
Программное обеспечение для определения параметров многомерной стохастической модели при оценке и прогнозе гемодинамических показателей работников транспорта. Результаты экспериментальных исследований по моделям прогноза.
Апробация работы. Результаты основных положений диссертации доложены, обсуждены и утверждены на: 1) ХХ Международной научной конференции «Математические методы в технике и технологиях» (г. Ярославль, май 2007 г.); 2) Международной научной конференции для студентов и аспирантов «Современные проблемы математики и ее приложения в естественных науках и информационных технологиях» (г. Харьков, март 2007 г.); 3) VII Международной научно-технической конференции «Математическое моделирование, обратные задачи, информационно-вычислительные технологии» (г. Пенза, ноябрь 2007 г.); 4) VII международной конференции «Идентификация систем и задачи управления» SICPRO ’08 (г. Москва, январь 2008 г.); 5) III Международной научно-технической конференции «Аналитические и численные методы моделирования естественнонаучных и социальных проблем» (г. Пенза, октябрь 2008 г.); 6) Выпуске Дорожного центра научно-технической информации (информационный листок №1976 (РДМО-76)-37674, г. Самара, октябрь 2008 г.); 7) 9-ой Всероссийской научной конференции с международным участием «Краевые задачи и математическое моделирование» (г. Новокузнецк, ноябрь 2008 г.).
Публикации. Самостоятельно и в соавторстве по материалам диссертации опубликовано 14 печатных работ (в том числе 2 работы в изданиях, рекомендованных ВАК), получены 2 свидетельства об официальной регистрации программ для ЭВМ.
Объем и структура работы. Диссертационная работа состоит из введения, 4 глав, выводов по главам, заключения, библиографического списка использованной литературы и приложения. Объем работы: 142 страницы основного машинописного текста, 42 рисунка, 9 таблиц. Библиографический список использованной литературы содержит 102 источника.