Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Обратная задача интерпретации данных по результатам тестовых экспериментов Копит, Татьяна Александровна

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Копит, Татьяна Александровна. Обратная задача интерпретации данных по результатам тестовых экспериментов : диссертация ... кандидата физико-математических наук : 05.13.18 / Копит Татьяна Александровна; [Место защиты: Моск. гос. ун-т им. М.В. Ломоносова. Физ. фак.].- Москва, 2012.- 141 с.: ил. РГБ ОД, 61 12-1/1185

Введение к работе

Актуальность темы. В современных научных исследованиях часто приходится решать задачи, в которых из имеющегося массива данных требуется извлечь некоторую скрытую в них информацию. Такие задачи называют задачами интерпретации данных. К ним, в частности, относятся задачи оценивания параметров исследуемых объектов по поступающим от них сигналам, задачи прогноза состояния систем в будущем или в условиях, отличных от тех, при которых получены данные, по наблюдению их текущих состояний, и др.

Для извлечения из данных полезной информации необходима математическая модель, связывающая данные с содержащейся в них информацией (прямая модель формирования данных). Задача интерпретации данных может рассматриваться как обратная задача математического моделирования, методы решения которых широко известны. Однако если модель задана неточно, то точность решения обратной задачи может оказаться неудовлетворительной. В этом случае необходимо уточнение модели.

Одним из способов уточнения модели является проведение тестовых экспериментов — натурных или вычислительных, результатом которых являются отклики модели на известные ситуации. По этим данным на первом этапе производится уточнение модели, и на следующем эта уточненная модель используется для решения обратной задачи: из данных, полученных независимо от тестов, извлекается информация о той ситуации, в которой эти данные получены.

Математическая процедура уточнения модели по тестам зависит от того, как поставлена задача уточнения модели. Поскольку для рассматриваемой задачи чрезвычайно важна именно точность интерпретации данных, то актуальной является задача разработки таких математических методов уточнения модели, которые обеспечивали бы максимальную точность интерпретации данных на втором этапе, или, по крайней мере, в которых погрешность уточненной модели была бы согласована с точностью интерпретации.

Решение задачи интерпретации зависит от используемых модельных предположений о том, как получены данные тестов и интерпретируемые данные, поэтому актуальной является разработка математических методов контроля адекватности этих предположений. Модельные предположения считаются адекватными, если они не противоречат всем известным данным о моделируемой реальности.

Решению этих задач и посвящена настоящая работа.

Кроме того, заметим, что под результатами тестов можно понимать расчеты прямой задачи для некоторых известных ситуаций. Если прямая модель построена как сложный комплекс программ, требующих большого времени расчета, то вся доступная информация о модели формирования данных фактически содержится в вычислениях, выполненных с некоторой точностью для набора тестовых ситуаций. Тем самым развиваемые в диссертации методы актуальны для решения задач интерпретации данных, модель формирования которых задана в виде сложных компьютерных моделей.

Цель работы. Целью работы является решение задач интерпретации экспериментальных данных для случая, когда модель эксперимента задана в виде результатов тестовых измерений, и исследование свойств решений.

Задачами исследования являются:

разработка новых математических методов и алгоритмов интерпретации данных, модель формирования которых построена по результатам ее откликов на тестовые ситуации с точностью, обеспечивающую максимальную или заданную точность решения задачи интерпретации данных;

адекватности используемых при этом математических моделей;

интерпретации данных в виде комплексов программ для проведения вычислительного эксперимента.

Научные результаты, выносимые на защиту.

    1. Разработан метод и численный алгоритм решения задачи интерпретации данных, где модель формирования данных строится путем кусочно-линейной аппроксимации на основе тестов, погрешность измерения ограничена по норме, при этом контролируется точность интерпретации данных и адекватность используемых математических моделей.

    2. Разработан метод и численный алгоритм решения задачи интерпретации данных, где модель формирования данных задана в виде распределения возможностей на множестве линейных операторов и уточняется по тестам, погрешности измерений являются нечеткими векторами с заданными распределениями возможностей, при этом максимизируется апостериорная возможность интерпретации данных и контролируется адекватность используемых математических моделей.

    3. Создан комплекс программ для прямого моделирования процессов протонного транспорта и синтеза АТФ на фотосинтетической

    мембране сложной пространственной структуры. В вычислительном эксперименте получены оценки входных параметров системы.

    Методы исследования. В диссертации применяются методы теории

    1 2 измерительно-вычислительных систем , методы теории ВОЗМОЖНОСТИ ,

    методы математического программирования. Численные эксперименты

    реализованы с использованием программ, написанных на языке С/С++, а

    также программ на базе платформы Matlab.

    Научная новизна. Исследовано решение задачи интерпретации данных, позволяющее получать оценки погрешности интерпретации данных на основе кусочно-линейной аппроксимации нелинейного оператора модели их формирования, построенного по тестам. Дан метод выбора областей линейности из условий согласования точности интерпретации, точности аппроксимации и точности задания данных и результатов тестов. Построен метод проверки адекватности используемых математических моделей.

    Впервые получено решение задачи интерпретации данных, где оценки строятся при максимизации апостериорной возможности на основе данных о параметрах объекта, искаженных нечеткой погрешностью. В данной задаче прямая модель данных задана в виде результатов тестов, выполненных также с нечеткой погрешностью, даны методы проверки адекватности математических моделей.

    Разработаны методы вычисления оценок и характеристик адекватности моделей, методы реализованы в виде комплекса программ. Методы применялись при интерпретации данных модели фотосинтетической системы.

    Научная и практическая значимость. Практическая ценность разработанных в диссертации новых методов решения обратных задач интерпретации данных состоит в том, что разработан новый инструмент для научных исследований и решения прикладных задач, который

    позволяет уточнять погрешность решения задачи интерпретации данных, модель формирования которых неизвестна или известна неточно, путем уточнения модели проведением экспериментов, тестирующих модель;

    возможности проверки адекватности математических моделей, используемых при решении задачи интерпретации.

    1. Пытьев Ю.П. «Методы математического моделирования измерительно-вычислительных систем». M.: ФИЗМАТ ЛИТ, 2004.

    2. Пытьев Ю.П. «Возможность как альтернатива вероятности». M.: ФИЗМАТЛИТ, 2007.

    Ценность работы. Разработанные в диссертации методы существенно расширяют класс решаемых задач интерпретации данных, позволяя получать оценки параметров контролируемой точности для случая, когда модель данных определяется или уточняется по результатам тестов. В частности, становится возможным решать задачи интерпретации данных эксперимента, математическая модель которого реализована в виде комплекса программ, требующего значительного времени расчета. Разработанные методы контроля адекватности используемых математических моделей позволяет повысить достоверность получаемых результатов.

    Научная обоснованность и достоверность. Полученные автором теоретические результаты подтверждены строгими доказательствами и вычислительными экспериментами. Результаты решения задач интерпретации данных фотосинтеза, помимо оценок контролируемой точности, содержат параметры, характеризующие согласие используемых моделей с реальными данными и результатами тестов. Результаты решения задач интерпретации данных фотосинтеза согласуются с теоретическими представлениями.

    Апробация результатов работы. Результаты, представленные в работе, докладывались на научных семинарах кафедры компьютерных методов физики, кафедры математики физического факультета МГУ, НИВЦ МГУ и кафедре биофизики биологического факультета МГУ имени М.В. Ломоносова, а также на следующих конференциях: Международной конференции "Математика. Компьютер. Образование." (Дубна, Пугцино, январь 2006, 2007, 2009, 2010 гг.); Международной мультиконференции "Актуальные проблемы информационно-компьютерных технологий, мехатроники и робототехники." (Дивноморское, октябрь 2009 г.); Международной научной конференции студентов, аспирантов и молодых учёных "Ломоносов" (Москва, апрель 2006 и 2010 гг.). Всероссийской конференции "Математические методы распознавания образов" (Петрозаводск, 2011 г.); Международной конференции "Rough Sets, Fuzzy Sets, Data Mining and Granular Computing" (Москва, 2011 г.).

    Работа была выполнена при поддержке грантов РФФИ 08-07-00120, 09-01-96508, 09-07-00505-а, 11-07-00338-а.

    Личный вклад автора. Все исследования, результаты которых изложены в диссертационной работе, проведены лично соискателем в процессе научной деятельности. Из совместных публикаций в диссертацию включен лишь тот материал, который непосредственно принадлежит соискателю.

    Публикации. По теме диссертации имеется 14 публикаций, список которых приводится в конце автореферата.

    Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения и библиографии. Объём работы — 141 страница, содержит 22 иллюстрации. Библиография включает в себя 91 печатную работу.

    Похожие диссертации на Обратная задача интерпретации данных по результатам тестовых экспериментов