Введение к работе
Актуальность работы. Постоянный рост сложности, миниатюризация и требование снижения потребляемой энергии современных электротехнических изделий определяются необходимостью совершенствования конструкции и технологии производства комплектующих деталей и изделий в целом. При этом приоритетная роль технологии объясняется наличием сильной зависимости свойств изделий от состава материала, его структуры, видов и режимов технологической обработки. Это приводит к разбросу свойств изделий, обусловленному несовершенством технологического оборудования. В этих условиях традиционный подход, ориентированный на обеспечение идентичности технологических режимов для всех изделий приводит к значительной доле брака.
С учетом расширения областей применения, а также влияния функциональных возможностей электротехнических изделий на прогресс в различных областях науки и техники, обеспечение повышения их качества по технической, экономической и социальной значимости является крупной межотраслевой научно-технической проблемой, имеющей важное общехозяйственное значение.
Повысить качество электротехнических изделий позволяет адаптивный подход к организации технологического процесса их изготовления. Его реализация возможна с помощью автоматизированной системы управления, способной в реальном масштабе времени повысить технологическую точность путем компенсации влияния случайных факторов на разных стадиях производства.
Эффективность системы управления во многом зависит от используемых методов и технических средств получения достоверной измерительной информации о магнитных, электрических и других свойствах объектов, достаточной для управления технологическим оборудованием с целью обеспечения заданных эксплуатационных характеристик электротехнических изделий. Существующие средства испытаний не в полной мере удовлетворяют предъявляемым требованиям, так как в большинстве своем предназначены для реализации физического эксперимента, возможности которого ограничены нелинейной зависимостью свойств изделий от их формы, габаритов, уровня внешних воздействий. Сложность, а чаще невозможность, особенно в цеховых условиях прямых измерений магнитных, электрических и других величин, соответствующих наиболее информативным характеристикам и параметрам, обусловлена, как правило, несовершенством измерительных преобразователей. Для решения проблемы необходимо использовать программно-аппаратные средства измерения и контроля (ПАСИК), реализующие методы натурно-модельных испытаний. В этом случае экспериментальное определение характеристик и параметров испытуемых изделий объединяется с моделированием их электромагнитных полей в единый измерительно- вычислительный процесс.
Современная компьютерная техника и разработанные методы позволяют успешно решать многие задачи моделирования электромагнитных и тепловых полей при проектировании электротехнических изделий. Однако сложность алгоритмической и программной реализации, высокие требования к вычислительной мощности используемых компьютеров, а также значительное время вычислений затрудняют использование известных моделей и методов расчета для проведения натурно-модельных испытаний электротехнических изделий.
В этой связи актуальным является построение эффективных и адекватных математических моделей электромагнитного и теплового полей, алгоритмов их численной реализации, создание комплексов компьютерных программ, аппаратных средств, позволяющих в совокупности создавать ПАСИК, отвечающие требованиям натурно-модельных испытаний для систем управления производством электротехнических изделий.
Работа выполнена в соответствии с приоритетным направлением развития науки, технологий и техники РФ «Информационно-телекоммуникационные технологии и электроника» (утверждено указом Президента РФ от 30.03.02 г.); научным направлением Южно-Российского государственного технического университета (НПИ) «Теория и принципы построения информационно-измерительных систем и систем управления» (утвержденно решением ученого совета университета от 25.01.03 г. и переутверждено 1.03.06 г.); договором о сотрудничестве в области образования, науки и техники между ЮРГТУ (НПИ) и Техническим университетом Ильменау (Германия) от 14.12.2001 г.
Целью работы является разработка и совершенствование математических моделей электромагнитного и теплового полей, алгоритмов их численной реализации, комплексов программ и построение на их основе программно-аппаратных средств измерения и контроля, позволяющих реализовать эффективные системы управления производством электротехнических изделий.
Для достижения поставленной цели в рамках диссертационной работы были поставлены и решены следующие основные задачи:
предложены различные по сложности модели электромагнитного поля, ориентированные на реализацию метода натурно-модельных испытаний изделий с помощью ПАСИК;
разработаны модификации методов численного моделирования электромаг - нитного поля, с использованием новых математических моделей, обеспечивающие нахождение параметров поля с заданными погрешностью и быстродействием.
предложены метод и алгоритм определения теплофизических параметров сред, основанные на проведении натурно-модельных испытаний изделий;
разработаны математические модели, методы и алгоритмы расчета поля для проектирования и исследования ПАСИК;
разработан метод и подсистема управления сборкой электромагнитов, основанные на моделировании зависимости тяговой силы от магнитных свойств комплектующих деталей;
разработаны быстродействующие устройства измерения напряженности магнитного поля непосредственно у поверхности испытуемых изделий;
разработаны ПАСИК магнитных и электрических параметров электротехнических изделий, отвечающие требованиям современных систем управления производством этих изделий.
Методы исследований. В работе применялись методы теории электромаг - нитного поля, теории электрических и магнитных цепей, численные методы решения систем нелинейных дифференциальных уравнений в частных производных, численные методы интегрирования, численные методы решения алгебраических уравнений, методы теории измерений, методы теории планирования эксперимента.
Обоснованность и достоверность научных положений и выводов
Обоснованность и достоверность научных положений и выводов подтверждаются применением фундаментальных законов теории электромагнитного поля, корректностью допущений, принимаемых при математическом моделировании, согласованием теоретических положений с результатами экспериментальных исследований, критическим обсуждением основных результатов работы с ведущими специалистами в области математического моделирования и измерительной техники.
Основные научные результаты и положения, выносимые на защиту
-
-
Математическая модель стационарного магнитного поля в виде интегрального уравнения и модифицированный метод интегральных уравнений для численного моделирования стационарных магнитных полей разомкнутых магнитных систем с малыми немагнитными зазорами.
-
Комбинированная математическая модель квазистационарного магнитного поля на основе скалярных и векторного потенциалов пониженной размерно - сти для моделирования магнитного состояния электротехнических изделий в магнитных системах сложной конфигурации.
-
Комбинированная численно-экспериментальная модель магнитного поля с использованием дифференциальных уравнений с частными производными и экспериментальных данных для моделирования стационарных магнитных полей полуразомкнутых магнитных систем.
-
Метод управления сборкой электромагнитов, основанный на моделировании зависимости тяговой силы от магнитных свойств комплектующих изделий.
-
Алгоритмы определения области контроля параметров среды измерительным преобразователем на основе расчета электростатического плоскомеридианного поля, использующие модели поля в виде совокупности интегральных уравнений в кусочно-однородной линейной среде и обобщенной постановки краевой задачи для дифференциальных уравнений с частными производными в неоднородной нелинейной среде.
-
Метод и алгоритм определения теплофизических параметров среды, основанные на проведении натурно-модельных испытаний изделий.
-
Математическая модель процессов импульсного перемагничивания магнитного сердечника разомкнутой формы и методика расчета времени перемагни- чивания сердечника ферромодуляционного преобразователя
-
Структуры, алгоритмы функционирования и комплексы программ программно-аппаратных средств измерения и контроля для систем управления производством электротехнических изделий.
Научная новизна проведенных исследований
Новизна научных результатов, полученных в диссертационной работе, заключается в следующем:
-
-
-
Предложена математическая модель стационарного магнитного поля, содержащая потенциалы простого и двойного слоев и разработан модифицированный метод интегральных уравнений на ее основе для численного моделирования стационарных магнитных полей разомкнутых магнитных систем с малыми немагнитными зазорами, отличающиеся от известных тем, что влияние зазоров учитывается с помощью потенциала двойного слоя и позволяющие значительно сократить время расчета при требуемой точности моделирования в таких системах.
-
Предложена комбинированная математическая модель для расчета трехмерного квазистационарного магнитного поля системы тел, расположенных в неограниченной области, включающая, в отличие от известных, дифференциальные уравнения с частными производными относительного векторного, скалярного магнитных и электрического потенциалов и интегральное уравнение относительно скалярного магнитного потенциала, что позволяет значительно сократить размерность задачи определения магнитных параметров в магнитных системах сложной конфигурации.
-
Предложена комбинированная численно-экспериментальная математическая модель магнитного поля на основе дифференциальных уравнений с частными производными, отличающаяся тем, что при построении модели используются результаты измерения магнитного потока по границе исследуемой области. Применение модели позволяет с высоким быстродействием и точностью вычислять параметры магнитного поля методом конечных элементов в полуразомкнутых магнитных системах.
-
Разработан метод управления сборкой электромагнитов, отличающийся от известных тем, что впервые предлагается учитывать зависимость тягового усилия от магнитных свойств деталей электромагнита, полученную путем моделирования состояния электромагнита в рабочих условиях его эксплуатации и позволяющий повысить выход годных изделий.
-
Разработаны алгоритмы определения области контроля параметров среды измерительным преобразователем на основе расчета электростатического плоскомеридианного поля, использующие преимущество представления поля на основе интегральных уравнений в кусочно-однородной линейной среде и обобщенной постановки краевой задачи для дифференциальных уравнений с частными производными в неоднородной нелинейной среде. Применение алгоритмов позволяет повысить эффективность моделирования электрической системы при проведении натурно-модельных испытаний электротехнических изделий сложной формы.
-
Предложены метод и алгоритм определения теплофизических параметров сред, основанные на проведении натурно-модельных испытаний электротехнических изделий и отличающийся от известных простотой реализации при тре - буемой точности.
-
Разработана математическая модель процессов импульсного перемагничи- вания магнитного сердечника разомкнутой формы ферромодуляционного преобразователя, впервые учитывающая влияние близко расположенных испытуемых изделий (ИИ), и методика расчета времени перемагничивания сердечника на ее основе, позволяющие проектировать быстродействующие устройства измерения напряженности магнитного поля.
-
Предложенные математические модели, алгоритмы и программы для расчета электромагнитного поля послужили основой создания программно - аппаратных средств измерения и контроля, реализующих метод натурно-модельных испытаний широкого спектра заготовок и изделий из магнитотвердых, магнитомяг- ких, магнитополужестких и диэлектрических материалов для систем управления производством электротехнических изделий.
Практическая ценность и реализация результатов работы
Использование в ходе проектирования математической модели процессов импульсного перемагничивания магнитного сердечника разомкнутой формы и методики расчета времени перемагничивания сердечника позволило разработать ряд быстродействующих устройств для измерения напряженности магнитного поля у поверхности ИИ методом импульсной компенсации, защищенных 4 патентами на изобретения РФ. Устройства позволяют измерять напряженность магнитного поля до 100 кА/м на расстоянии 0,3 мм от поверхности детали с погрешностью не хуже ±2 %.
На основе модифицированного метода интегральных уравнений разработана компьютерная модель и создан комплекс программ для реализации натурно- модельных испытаний электротехнических изделий в разомкнутых магнитных системах с малыми немагнитными зазорами, входящий в состав ПАСИК магнитных параметров изделий из магнитомягких материалов, изготовленного в институте микросхемотехники, механики и мехатроники технического университета Ильменау (ФРГ) в соответствии с программой научно-технического сотрудничества с ЮРГТУ(НПИ).
Предложенные алгоритмы расчета электростатического плоскомеридианного поля в кусочно-однородной линейной и неоднородной средах легли в основу программ для ЭВМ, позволяющих эффективно проектировать и исследовать измерительные преобразователи, в том числе накладные емкостные датчики.
Разработана подсистема управления технологическим процессом и создан экспериментальный образец ПАСИК, обеспечивающие возможность выполнения классификации по результатам натурно-модельных испытаний деталей по магнитным свойствам и позволяющие выполнить оптимальный подбор комплектов деталей для сборки электромагнитов. Погрешность измерения магнитных параметров деталей не превышает ±3 %, производительность - не менее 100 деталей в час.
Разработан программный комплекс на основе технологии LabView, позволивший создать интегрированную среду для получения и обработки данных о магнитном состоянии испытуемых деталей, моделирования тяговых характеристик электромагнитов, управления работой ПАСИК.
Созданы автоматизированные устройства измерения и контроля для приемосдаточных испытаний и межоперационного контроля заготовок и изделий. Устройства обеспечивают производительность натурно-модельных испытаний до 1800 изделий за час с погрешностью определения магнитных параметров не хуже ±5 %. Оригинальность технических решений, связанных с разработкой устройств подтверждена 8 авторскими свидетельствами и патентами на изобретения.
Математические модели квазистационарного и стационарного магнитных полей и программное обеспечение используются в ОАО «ВЭлНИИ» (г. Новочеркасск) при математическом моделировании магнитных полей тяговых электродвигателей с постоянными магнитами магистральных электровозов.
Результаты диссертационной работы внедрены также на ОАО «Магнит» (г. Новочеркасск), НПО «Магнетон» (г. Владимир), Вильнюсском заводе электроизмерительной техники, ПО «Сокол» (г. Белгород).
Материалы диссертационной работы используются в учебном процессе при выполнении учебно-исследовательских, курсовых и дипломных проектов студентами ЮРГТУ (НПИ).
Апробация работы. Основные положения и научные результаты исследований докладывались на научно-технических конференциях, симпозиумах, семинарах. В том числе: междунар. конф. по постоянным магнитам (Суздаль, 1988, 1991, 2000, 2009); VI Всеросс. науч.-техн. конф. «Состояние и проблемы измерений» (Москва, 1999); III - IV Всеросс. симпозиумах «Математическое моделирование и компьютерные технологии» (Кисловодск, 1999, 2000); междунар. науч., коллоквиумах (г. Ильменау (ФРГ), 1999, 2002, 2005, 2008 m);V междунар. конф. «Электротехнические материалы и компоненты» (Алушта, 2004); Всеросс. электротехническом конгрессе (Москва, 2005); междунар. науч.-практич. конф. «Теория, методы и средства измерений, контроля и диагностики» (Новочеркасск, 2000, 2006); междунар. семинарах «Физико-математическое моделирование систем» (Воронеж, 2003 - 2007); междунар. науч.-практич. коллоквиумах «Мехатро- ника - 2003, 2008, 2009» (Новочеркасск); VII науч.-практич. конф. «Образовательные, научные и инженерные приложения в среде LabVIEW и технологии National Instruments» (Москва, 2008); XXI междунар. научн. конф. «Математические методы в технике и технологиях» (Саратов, 2008); междунар. научн. конф. «Порядковый анализ и смежные вопросы математического моделирования» (Владикавказ, 2008); междунар. научн. конф. «Теория операторов. Комплексный анализ и математическое моделирование» (Волгодонск 2009).
Публикации. Основное содержание работы отражено в 78 научных публикациях, включая 20 статей в научных журналах по списку ВАК, 3 авторских свидетельства, 5 патентов на изобретения, 4 свидетельства о регистрации программного продукта. В автореферате приведен список основных публикаций из 64 наименований.
Структура и объем диссертации. Диссертационная работа состоит из введения, шести разделов, заключения и приложений. Ее содержание изложено на 376 страницах, проиллюстрировано 127 рисунками, 8 таблицами. Список литературы содержит 234 наименования.
Похожие диссертации на Математические модели и программно-аппаратные средства измерения и контроля для систем управления производством электротехнических изделий
-
-
-