Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Гибридный алгоритм прогнозирования и комплекс реализующих его программ Евсеева, Анна Владимировна

Гибридный алгоритм прогнозирования и комплекс реализующих его программ
<
Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ Гибридный алгоритм прогнозирования и комплекс реализующих его программ
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Евсеева, Анна Владимировна. Гибридный алгоритм прогнозирования и комплекс реализующих его программ : диссертация ... кандидата технических наук : 05.13.18 / Евсеева Анна Владимировна; [Место защиты: Иван. гос. энергет. ун-т им. В.И. Ленина].- Иваново, 2011.- 173 с.: ил. РГБ ОД, 61 12-5/1900

Содержание к диссертации

Введение

ГЛАВА 1. Анализ систем прогнозирования и постановка задачи исследования 9

1.1. Прогнозирование как предмет научного исследования 9

1.2. Современные методы построения прогноза 11

1.3. Математическая постановка задачи прогнозирования и выбор метода решения 16

Выводы по главе 1 19

ГЛАВА 2. Разработка системы прогнозирования 20

2.1. Разработка алгоритмов решения задачи прогнозирования с помощью базовых методов 20

2.2. Разработка гибридного алгоритма прогнозирования 61

Выводы по главе 2 68

ГЛАВА 3. Распараллеливание вычислений на суперкомпьютере с графическими ускорителями 69

3.1. Увеличение скорости выполнения алгоритма за счет использования технологии параллельных вычислений CUDA 69

3.2. Алгоритм распараллеливания поиска оптимального решения при помощи технологии CUD А 75

Выводы по главе 3 82

ГЛАВА 4. Экспериментальное исследование системы прогнозирования (на примере показателей электропотребления) 83

4.1. Проблема прогнозирования в области электроэнергетических услуг 83

4.2. Анализ динамики временного ряда электропотребления и планирование эксперимента 88

4.3. Результаты оценки точности системы прогнозирования электропотребления з

4.4. Результаты сравнительного анализа с другими современными моделями прогнозирования электропотребления 102

4.5. Перспектива использования разработанного комплекса прогнозирования 103

Выводы по главе 4 106

Заключение 108

Список использованных источников

Введение к работе

Актуальность темы

Построение точного прогноза для некоторого наблюдаемого процесса или явления - задача, нахождение решения которой является заветной целью для многих исследователей в самых разных областях человеческой деятельности. Независимо от предметной области (медицина, рынок услуг или технологическое производство) получение оптимального с точки зрения задаваемого критерия прогноза всегда принесет желаемую выгоду. В одном случае она может быть выражена в сэкономленных денежных средствах компании, в другом - в спасенных человеческих жизнях.

При всем многообразии существующих методов прогнозирования каждый из них решает задачу определения состояния объекта в будущем по значениям некоторых показателей, известных в настоящем. Так, например, в метеорологии прогнозированию подвергаются атмосферные явления, в гидрологии -паводки, в техносфере - режимы работы механизмов, в экономике - финансовые показателей, в энергетике - потребление ресурсов.

Результат прогнозирования зависит от многих параметров, таких как объем необходимой статистической информации, ее качество и достоверность, точность анализа предмета исследования, корректность в постановке задачи прогнозирования, доступность необходимых вычислительных средств. Одним из определяющих факторов также является обоснованный выбор необходимого метода прогнозирования.

Основы теории построения прогноза с помощью различных подходов заложены в работах Н. Винера, Л. Фогеля, А. Айфичера, Г. Лэма, Ф. Уоссермана, А.Я. Городецкого, В.А. Головко, В.А. Бесекерского, А.Б. Сергиенко и др.

Значительный вклад в решение вопросов прогнозирования на основе анализа временных рядов внесли Б.А. Староверов, Ф.Н. Ясинский, Б.И. Макоклюев, А.И. Орлов, В.Г. Царегородцев .

На сегодняшний день рынок программных продуктов, позволяющих строить прогноз с учетом тех или иных требований, достаточно разнообразен. В качестве примера можно привести некоторые из числа самых распространенных программ как универсальных: Microsoft Excel, Statistica, ForecastPro, Simulink, SPSS Statistics - так и специальных: NeuroShell Trader, Энергостат, IBM Traffic Prediction Tool, Stepwise Linear Search.

Несмотря на многочисленные разработки, которые ведутся в настоящее время в данном направлении, проблема продолжает быть актуальной по ряду причин. Во-первых, у каждого алгоритма есть как свои достоинства, так и недостатки. В зависимости от поставленной задачи не всегда является возможным применение одного из уже имеющихся подходов, без учета наличия его слабых сторон. Во-вторых, для каждой конкретной практической задачи характерно наличие своей специфики, что зачастую приводит к необходимости разработки алгоритма для отдельно взятой проблемы в рассматриваемой предметной области.

Цель работы

Цель проводимого исследования - разработка нового гибридного алгоритма для построения прогноза на основе анализа временных рядов, позволяющего повысить точность вычислений, а также разработка комплекса программ для решения задач прогнозирования с его использованием.

Задачи исследования

В соответствии с целью диссертации были поставлены и решены следующие задачи:

  1. Выбрать и программно реализовать оптимальные подходы для решения поставленной задачи.

  2. Разработать и реализовать программно гибридный метод расчета прогнозных значений на основе выбранных подходов.

  3. Разработать методику оптимизации вычислительного процесса, позволяющую повысить точность решения данной задачи гибридным методом.

  4. Разработать стратегию распараллеливания для решения поставленной задачи с учетом предложенной методики оптимизации на суперкомпьютере с графическими ускорителями.

  5. Разработать программный комплекс для использования разработанных методов при решении задачи прогнозирования.

  6. Провести апробацию разработанной системы на примере решения задачи прогнозирования электропотребления.

Объект исследования - временные ряды с наличием периодической составляющей в характере поведения.

Предмет исследования - математические методы построения прогноза, базирующиеся на основе анализа временных рядов.

Методы исследования

Для решения поставленных задач были использованы методы математического моделирования и прогнозирования временных рядов, понятия и методы теории нейронных сетей, основы теории фильтрации, методы эволюционного моделирования, методы вычислительной математики, теория параллельных вычислений.

Научная новизна работы

  1. Разработан принципиально новый гибридный алгоритм, объединяющий результаты прогнозирования трех методов: фильтра Винера, нейросетево-го подхода и эволюционного моделирования, позволивший повысить точность прогнозирования.

  2. Составлена и решена с помощью метода наименьших квадратов и метода градиентного спуска задача оптимизации для нахождения оптимального набора коэффициентов, позволяющая максимально повысить точность прогнозирования.

3. С использованием технологии CUDA на суперкомпьютере с графическими ускорителями выполнена параллельная реализация базовых методов, а также самого гибридного алгоритма для уменьшения времени построения прогноза.

Обоснованность научных положений

Обоснованность основных научных положений и выводов обеспечивается корректным использованием методов математического моделирования и прогнозирования временных рядов, теории искусственных нейронных сетей и теории фильтрации, методов эволюционного моделирования и вычислительной математики.

Достоверность результатов

Достоверность полученных результатов компьютерного моделирования подтверждается их согласованностью с фактическими данными.

Практическая ценность работы

Практическая значимость диссертационной работы заключается в создании методики, позволяющей повысить эффективность существующих подходов прогнозирования на основе анализа временных рядов.

Разработанный программный комплекс может быть использован для решения задачи прогнозирования на сутки вперед для показателей потребления электроэнергии, что подтверждается актом внедрения результатов исследования в деятельность Ивановской энергосбытовой компании.

Указанная методика может быть использована при построении прогноза для временных рядов показателей из других предметных областей, отличающихся наличием периодической составляющей в характере поведения. В частности, для прогнозирования вероятности возникновения лесных пожаров, о чем свидетельствует акт внедрения результатов в процесс выполнения комплексного проекта по созданию высокотехнологичного производства «Разработка программно-технического комплекса обнаружения и прогнозирования крупномасштабных природных пожаров» (2010-218-02-139) при поддержке Министерства образования и науки РФ (ГК № 13.G25.31.0077) сотрудниками ГОУ ВПО «Ивановский институт ГПС МЧС России».

Написаны программы для построения прогноза с помощью следующих методов: фильтра Винера, нейронной сети, эволюционного моделирования, гибридного алгоритма. Разработаны параллельные версии указанных методов. Представленный гибридный алгоритм и его параллельная версия зарегистрированы в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам. Получены два свидетельства о регистрации программ для ЭВМ № 2011617027 и № 2011616154.

Использование в учебном процессе

Разработанная методика и программный комплекс используются в учебном процессе кафедры высокопроизводительных вычислительных систем «Ивановского государственного энергетического университета имени В.И. Ленина», что подтверждается справкой о внедрении результатов исследования в учебный процесс.

Апробация работы

Основные положения диссертационной работы докладывались и обсуждались на IX международной научно-практической конференции «Исследование, разработка и применение высоких технологий в промышленности» (Санкт-Петербург, 2010 г.), X международной конференции «Высокопроизводительные параллельные вычисления на кластерных системах» (Пермь, 2010 г.), V международной научно-практической конференции «Пожарная и аварийная безопасность» (Иваново, 2010 г.), межвузовской научно-технической конференции аспирантов и студентов «Молодые ученые - развитию текстильной и легкой промышленности» ПОИСК-2011 (Иваново, 2011 г.), на расширенном заседании кафедры автоматики и микропроцессорной техники Костромского государственного технологического университета (Кострома, 2011 г.).

Публикации

По материалам диссертации опубликовано 11 печатных работ, в том числе четыре статьи в изданиях, рекомендованных ВАК министерства образования и науки РФ, два свидетельства о регистрации программ для ЭВМ.

Структура и объём работы

Работа состоит из введения, четырех глав, заключения, библиографического списка, включающего 146 наименований, и четырех приложений. Полный объем диссертации составляет 173 страницы, включая 29 рисунков и 13 таблиц.

Математическая постановка задачи прогнозирования и выбор метода решения

Поиск решения столь актуальной насущной проблемы нашел свое отражение в работах многих авторов. Каждый из них выбирает свой подход к поставленной задаче. Условно, все существующие методы прогнозирования можно разделить на два больших класса: статистические методы и методы искусственного интеллекта [145].

Подходы, относящиеся к первому классу, появились достаточно давно, и охватывают разработку, изучение и применение современных математико-статистических методов прогнозирования на основе объективных данных с применением методов прикладной статистики и теории принятия решений [90]. К данному типу относятся экстраполяция и тренды, регрессионный анализ, метод экспоненциального сглаживания. Методы данного рода показывают хорошие результаты в случае инерционности наблюдаемого объекта, однако, в силу относительной жесткости получаемых моделей плохо ведут себя в случае отклонений поведения от принятой нормы [21]. Подходы второго класса появились позднее, однако уже по праву прочно заняли свое место среди наиболее часто используемых методик и продолжают активно развиваться [28]. Они базируются на стремлении формализовать мыслительный процесс человека и обучить выявленным закономерностям электронное вычислительное устройство. В эту категорию методов входят искусственные нейронные сети, экспертные системы, нечеткая логика. Данные способы сложнее реализовать, однако они подходят для выявления сложных внутренних закономерностей, плохо прослеживаемых при статистических подходах [142].

Рассмотрим некоторые из наиболее часто используемых подходов. Экстраполяция и тренды Один из наиболее распространенных методов прогнозирования заключается в экстраполяции, т.е. в продлении в будущее тенденции, наблюдавшейся в прошлом. Экстраполяция тенденций динамических рядов сравнительно широко применяется в практике в силу ее простоты, возможности осуществления на основе относительно небольшого объема информации, наконец, ясности принятых допущений. Отсутствие иной информации помимо отдельно рассматриваемого динамического ряда часто оказывается решающим при выборе этого метода прогнозирования. При таком подходе к прогнозированию предполагается, что размер признака характеризующего явление, формируется под воздействием множества факторов, причем не представляется возможным выделить порознь их влияние [122].

Модель трендов применяется в работе [33]. Аналитическая основа модели базируется на использовании суммы трендов. Метод экспоненциального сглаживания Метод экспоненциального сглаживания является развитием трендовых методов и базируется на построении уравнений тренда с коэффициентами, меняющимися на горизонте прогнозирования. При данном подходе для построения прогноза принимается усредненное значение наблюдений, в которое значения последних наблюдений входят с большим весом по сравнению с весом старых наблюдений. Разработаны методы вычисления оптимальных весовых коэффициентов для постоянного уровня, трендов и сезонных коэффициентов (метод скользящего среднего, метод Хольта и Брауна, метод Винтерса). Метод экспоненциального сглаживания разработан для рядов, состоящих из большого числа наблюдений, при увеличении числа наблюдений точность прогноза возрастает [43].

Метод скользящих средних Метод скользящих средних используется, когда необходимо дать общую картину развития, основанную на механическом повторении одних и тех же действий по увеличению интервала времени.

Данный метод дает оценку среднего уровня за некоторый период времени. Так как средняя образуется за более длительный отрезок времени, она выступает не как средство обобщения единиц совокупности, а как средство их сглаживания. Чем больше интервал времени, к которому относится средняя, тем более плавным будет сглаженный уровень [106].

Регрессионный анализ Регрессия - закон изменения условного математического ожидания одной случайной величины в зависимости от значений другой. Математическое исследование оценок функции регрессии и изучение качества этих оценок по данным эксперимента составляет содержание регрессионного анализа [91]. Этот один из наиболее разработанных методов математической статистики используется, например, в [35].

Зачастую данный подход объединяется с корреляционным анализом, целью которого является исследование корреляционных связей между различными случайными величинами и функциями, или между значениями одной и той же случайной функции при разных значениях аргумента.

Достаточно популярной является модель, предложенная Боксом и Дженкинсом [19], рассмотревшим процессы авторегрессии интегрированного скользящего среднего (ARIMA). Данный способ для построения прогноза был использован в работе [124].

Искусственные нейронные сети

Нейронные сети используют современное представление о строении и функционировании мозга. Считается, что мозг состоит из простых элементов -нейронов, соединенных между собой синапсами, через которые они обмениваются сигналами.

Основное преимущество нейронных сетей заключается в способности обучаться на примерах. В большинстве случаев обучение представляет собой процесс изменения весовых коэффициентов синапсов по определенному алгоритму. При этом, как правило, требуется много примеров и много циклов обучения. Применение нейронных сетей оправдано тогда, когда невозможно построить точную математическую модель исследуемого объекта или явления [85].

Среди недостатков нейронных сетей можно назвать: длительное время обучения, склонность к подстройке под обучающие данные и снижение обобщающих способностей с ростом времени обучения. Кроме того, невозможно объяснить, каким образом сеть приходит к тому или иному решению задачи. Тем не менее, существует масса нейросетевых алгоритмов, в которых эти и другие недостатки так или иначе нивелированы.

В прогнозировании нейронные сети используются чаще всего по простейшей схеме: в качестве входных данных в сеть подается предварительно обработанная информация о значениях прогнозируемого параметра за несколько предыдущих периодов, на выходе сеть выдает прогноз на следующие периоды.

Примеров применения нейросетевого подхода для прогнозирования достаточно много: нейронные сети могут применяться как отдельно [34], так и в соединении с другими методами [16], либо образовывать целый нейросетевой комплекс, как в [110]. Экспертные системы

Экспертные методы прогнозирования применяются, как правило, в случаях, когда отсутствуют какие-либо статистические данные. К данному классу относятся методы анализа и обобщения суждений и предположений с помощью экспертов. Таким образом, центральным этапом экспертного прогнозирования является проведение опроса экспертов.

Экспертная оценка, т.е. прогноз специалиста в данной конкретной области, представляет собой некоторый промежуточный (между прогнозированием и предсказанием) вариант подхода к формированию представления о будущем. С одной стороны, эта оценка основана на субъективном представлении эксперта о возможном развитии прогнозируемого процесса, с другой, - она учитывает многие факторы, если и не поддающиеся непосредственному измерению и формализации, то допускающие объективную интерпретацию в рамках научного обоснования эксперта [15].

Эксперты предприятия по составлению прогноза такие зависимости выявляют постепенно, за месяцы и годы работы; эксперт считается тем более ценен, чем он больше знает специфику предприятия. Однако причины этих закономерностей могут изменяться со временем, коренным образом влияя на дальнейшее развитие рассматриваемого процесса.

Построение экспертной системы на базе нейронных сетей выполнено в [102]. Методы нечеткой логики Математическая теория нечетких множеств (fuzzy sets) и нечеткая логика (fuzzy logic) являются обобщениями классической теории множеств и классической формальной логики. Данные понятия были впервые предложены американским ученым Лотфи Заде (Lotfi Zadeh) в 1965 г. Основной причиной появления новой теории стало наличие нечетких и приближенных рассуждений при описании человеком процессов, систем, объектов [135].

Разработка гибридного алгоритма прогнозирования

Эволюционное моделирование вышло из наблюдений человека за протеканием биологических процессов в природе. Если при моделировании нейронных сетей внимание уделялось системам функционирования отдельного человека, то при развитии эволюционного моделирования акцент сделан на изучении изменений, происходящих в сообществе в целом. Можно сказать, что нейронные сети - это микро-, а эволюционное моделирование - макроподходы к рассмотрению человеческой природы.

В настоящее время эволюционное моделирование сочетает в себе методы математического и компьютерного моделирования, основанные на принципе биологического эволюционизма. Такой подход преследует две глобальные цели, причем обе направлены в будущее. Во-первых, он позволяет сымитировать различные варианты развития наблюдаемой системы и соответственно заранее подготовиться к последствиям или же, благодаря изменению тех или иных параметров, направить ход эволюционного процесса в нужное русло. Во-вторых, эволюционное моделирование исследует проблему получения особи, наилучшим образом удовлетворяющей заданным требованиям, то есть решается задача оптимизационного плана. Выполнение данной работы можно отнести к решению задач второго типа.

Эволюционное моделирование включает в себя такие разделы, как генетические алгоритмы, эволюционные стратегии и эволюционное программирование. Эволюционные алгоритмы хорошо подходят как простой эвристический метод оптимизации многомерных, плохо определенных функций. Именно поэтому данный метод был выбран в качестве одного из базовых при решении задач прогнозирования, где желаемое прогнозируемое значение может быть представлено в виде функции, зависящей от большого количества параметров - значений в прошлые периоды времени - причем четкий вид данной функции строго не определен. К настоящему времени методы эволюционного моделирования прошли долгий путь развития и имеют несколько направлений в самых разных областях науки.

В качестве начала отсчета истории развития эволюционного моделирования можно принять предложенную в 60-х годах П. Фогелем, А. Оуэнсом и М. Уолшем схему эволюционной оптимизации. Параллельно с этим происходило развитие Дж. Голландом из Мичиганского университета генетических алгоритмов, предназначенных для решения задач оптимизации, но уже в сфере комбинаторики. В 70-х годах Л. Растригиным был предложен ряд алгоритмов случайного поиска в рамках бионического подхода к проблеме искусственного интеллекта. Продолжение его идей, а также развитие метода группового учета аргументов и исследований, проводимых П. Фогелем, нашло отражение в работах И. Букатовой по эволюционному моделированию. Именно на основе алгоритма эволюционного моделирования, предложенного И. Букатовой в книге [26], был реализован эволюционный подход в данной работе.

Эволюционная программа реализует ускоренное моделирование некоторых фундаментальных процессов естественной эволюции [115]. В природной среде выживает тот, кто является наиболее приспособленным к условиям обитания. Аналогично этому принципу метод эволюционного моделирования сводится к отбору особей, максимально удовлетворяющих указанным критериям.

Следовательно, общая схема решения задачи с помощью метода эволюционного моделирования состоит из следующих этапов: 1. Создание начальной популяции.

На начальном этапе исходная популяция определяется случайным образом или задается. При этом ее возможность для выполнения необходимых условий не учитывается. Данный набор особей служит материалом для дальнейшего получения потомков с заданными требованиями. 2. Определение степени приспособленности.

Производится оценка каждого представителя популяции по критерию оптимальности. Для этого вычисляется значение целевой функции, зависящей от свойств особи и характеризующей ее адекватность представленным условиям.

На данном этапе из множества особей, представленных в популяции, выбирается одна для проведения дальнейших модификаций. Выбор может происходить случайным образом или же на основании значений оценивающей функции, вычисленных на предыдущем шаге. 4. Репликация. Копирование выбранной особи. 5. Мутация. Видоизменение случайным образом текущей особи с помощью одного из видов мутации. 6. Оценка потомка. Вычисление значения целевой функции для потомка. Добавление в популяцию происходит, если, в соответствии с критерием оптимальности, он оказывается более приспособленным, чем какой-либо уже существующий представитель. 7. Критерий останова. Проверяется условия остановки программы. Если условие выполнено, - задача решена, в противном случае следует переход к пункту 3. В алгоритме, предложенном И. Букатовой, в качестве представителя популяции выступает детерминированный автомат Мили. Конечным детерминированным автоматом Мили называется объект, который задается множеством из пяти элементов: A = (X,Z,S,fz,fs), где X = {xj,x2,...,x }-конечный входной алфавит; Z = z],z2,...,z } -конечный выходной алфавит; S = {s1,s2,... n} - конечное множество состояний; zk = fz(xk,sk) - функция выходов; sk+1 =fs(xk,sk) - функция переходов. В начальный момент времени t0 автомат находится в состоянии s0, называемом начальным состоянием.

Здесь использовано понятие «состояние», так как автоматы описывают процессы, зависящие не только от состояния входов в данный момент времени, но и от некоторой предыстории, то есть величин, поступавших на вход системы ранее.

В каждый дискретный момент времени t = 0, 1,2,... автомат находится в определенном состоянии s(t) из множества состояний. Он воспринимает поступающее на вход значение x(t), реагирует, выдавая на выход величину z(t) и переходя в состояние s(t+l). Таким образом, если на вход автомата в начальный момент времени последовательно подавать величины временного ряда, то они будут восприниматься в качестве значений входного алфавита х(0), х(1), х(2),..., а на выходе появится цепочка символов выходного алфавита: z(0), z(l),z(2),....

Для задания конечного автомата А необходимо описать все элементы множества A = (X,Z,S,fz,fs), т. е. множество состояний (S), входной (X) и выходной (Z) алфавиты, а также функции переходов (fs) и выходов (fz). Кроме того требуется задать начальное состояние (s0). Существует несколько способов задания работы автомата, но наиболее часто используются табличный и графический. Рассмотрим их подробнее.

Алгоритм распараллеливания поиска оптимального решения при помощи технологии CUD А

Генерирующие, сбытовые и ремонтные компании в перспективе станут преимущественно частными и будут конкурировать друг с другом. В естественномонопольных сферах, напротив, происходит усиление государственного контроля.

Таким образом, создаются условия для развития конкурентного рынка электроэнергии, цены которого не регулируются государством, а формируются на основе спроса и предложения, а его участники конкурируют, снижая свои издержки [99].

Повышение точности получаемого прогноза при планировании будущего потребления энергоресурсов должно являться одной из составляющих политики снижения издержек энергосбытовой компании и, как следствие, повышения конкурентоспособности на обновленном рынке энергетических услуг.

Особенностью отношений на рынке энергетических услуг является тот факт, что электроэнергия - товар, который невозможно запасти или произвести впрок, следовательно, о его покупке и продаже необходимо договариваться заранее, а это невозможно без своевременного прогнозирования и планирования. Расчет энергопотребления в будущий период времени должен проводиться постоянно и точности получаемого прогноза должно быть уделено особое внимание. В случае занижения необходимого объема энергоресурсов компания будет нести убытки из-за необходимости закупки недостающего объема непосредственно в момент потребления по завышенной цене, или же нанесет вред своей репутации из-за нарушения обязательств перед потребителями. Завышенные ожидания по энергопотреблению так же приведут к убыткам из-за отсутствия спроса, и, как следствие, к излишнему расходованию средств на непотребленную электроэнергию.

По законам рынка существенную часть издержек, связанных с избыточным или недостаточным потреблением, берет на себя предприятие, заказывающее электроэнергию [12]. Раньше для учета таких расходов использовался так называемый сектор отклонений. Все Ьакты превышения или снижения потребляемого объема электроэнергии за каждый час по сравнению с заказываемым объемом учитываются в соответствующих таблицах, после чего производится расчет стоимости отклонений (по Методике расчета стоимости отклонений, утвержденной Федеральной службой по тарифам приказом N:44-э/3 от 24 августа 2004 г.).

Чтобы рассчитать стоимость отклонений, использовалась система коэффициентов, образующих прогрессивную шкалу: отклонения менее 2% от заявки тарифицируются с коэффициентом 1,0 (таким образом, предприятие не несет дополнительных издержек при столь малых отклонениях); чем более серьезны отклонения, тем более крупные суммы предприятие вынуждено заплатить за допущенные несоответствия (табл. 5). Таким образом, служба энергетики предприятия оказывается перед непростой задачей составления достоверной заявки на потребление электроэнергии.

С 1 октября 2010 года начал работу более сложный элемент российского оптового рынка электроэнергии - балансирующий рынок, торговля на котором будет осуществляться в режиме, близком к реальному времени.

По введения данного механизма системный оператор строил прогноз объема потребления электроэнергии участниками оптового рынка в режиме "за сутки до реального времени". Но имеют место быть ситуации, в которых по факту потребителю необходим больший объем энергии, чем он спрогнозировал и на какой подал заявку. Если больше потребить решил не только он, но и другие участники, то есть в целом потребление системы выше, чем прогнозировалось, то приходится загружать более дорогие генерирующие мощности, поскольку все дешевые генераторы уже отобраны в режиме "за сутки до реального времени". Соответственно, дополнительная энергия будет стоить дороже, но ровно настолько, насколько загружены более дорогие генераторы - по их ценовым заявкам. После введения механизма балансирующего рынка системный оператор рассматривает заявки поставщиков, готовых предоставить энергию, и выбирает из них самые дешевые. В другом случае, если кто-то из покупателей оптового рынка увеличивает потребление, а кто-то снижает, и загрузка всей системы в целом уменьшается, увеличение потребления будет стоить не дороже, чем плановое потребление. Все основано на рыночной экономике. Если покупатель за сутки заявил значительный объем, а фактически будет потреблять меньше, ему предоставляется возможность продать излишки на балансирующем рынке, но цена уже станет зависеть от ситуации в данный момент. Если покупатель потребил меньше, но и вся система в это же время снизила нагрузку, то, за продажу своих излишков он получит мало, потому что этот объем, и другим также не будет нужен [83].

Таким образом, сложился следующий механизм. Энергосбытовая компания покупает электроэнергию по регулируемым договорам в рамках предельных объемов приобретения энергии по установленным тарифам, на данный момент это от 70 до 75% от потребления. Оставшаяся часть электроэнергии покупается по свободным ценам на рынке на сутки вперед, либо по свободным двусторонним договорам. Цена и объемы регулируемых договоров являются фиксированными и изменению не подлежат. Для осуществления покупки необходимых объемов электроэнергии Энергосбытовая компания подает заявку Администратору торговой системы с указанием плановых почасовых объемов потребления, а также уведомляет о заключении свободного двустороннего договора. Администратор торговой системы в оперативном режиме сводит указанное в заявках (плановое) и фактическое потребление и на разницы (отклонения) проводит вторичный ценовой аукцион - механизм Балансирующего рынка - определяет цены, по которым продаются излишне закупленные объемы и покупаются недозаявленные объемы потребления электроэнергии. Механизм Балансирующего рынка автоматически означает, что цена продажи отклонений будет меньше цены на рынке на сутки вперед; цена покупки отклонений - выше цены на рынке на сутки вперед. При этом суммарные плановые объемы потребления, заявляемые энергосбытовой компанией, должны укладываться в +10% или -5% интервал отклонения [64].

Оценочные расчеты, проведенные для ЭС России с уровнем месячного потребления около 1500 млн. кВтч показали, что улучшение качества прогнозирования только месячного потребления на 0,1% способно в настоящих условиях снизить затраты на оплату отклонений от плана по поставкам электроэнергии на 3-5 млн. рублей в год [81]. Именно поэтому поиск решения проблемы прогнозирования энергопотребления и, в частности, повышения точности получаемого прогноза продолжается постоянно, в том числе в работах [16; 22; 31; 33; 63; 70; 81; 83; 90; 129; 138] и др.

Результаты сравнительного анализа с другими современными моделями прогнозирования электропотребления

Разработанная методика и программный комплекс внедрены в учебный процесс кафедры Высокопроизводительных вычислительных систем Ивановского государственного энергетического университета в курсе «Численные методы». Кроме того, данный подход может быть использован как для реализации системы прогнозирования энергопотребления, так и для временных рядов показателей, отличающихся наличием периодической составляющей в характере поведения, из других предметных областей [51], например, для прогнозирования вероятности возникновения лесных пожаров [128]. Проблеме прогнозирования показателей в данной области и поиску путей ее решения посвящены многие работы, в том числе: [7; 8; 9; 10; 44; 45; 46; 56; 59; 60; 68; 72; 79; 95; 98; 103; 119; 132; 133; 134; 135].

Под лесными пожарами понимается стихийное, неуправляемое распространение огня по лесным площадям. Отличие природных пожаров от других чрезвычайных катастроф природного характера заключается в их регулярности и большой территории распространения. Лесные пожары могут наблюдаться почти в любое время года. Основными причинами их возникновения является деятельность человека, грозовые разряды, самовозгорания торфяной крошки и сельскохозяйственные палы в условиях жаркой погоды или в, так называемый, пожароопасный сезон (период с момента таяния снегового покрова в лесу до появления полного зеленого покрова или наступления устойчивой дождливой осенней погоды). Ежегодно данное явление наносит экологический и экономический ущерб, а так же уносит человеческие жизни во многих государствах по всему миру. Для России эта тема особенно актуальна в связи с широкой распространенностью лесных угодий и их хозяйственной значимостью. В связи с вышеизложенным является очевидной необходимость создания и использования методов прогнозирования возникновения лесных пожаров, которые бы позволили пожарным службам принять своевременные меры по предупреждению катастрофы и взять развитие ситуации под свой контроль.

В ряде стран, таких как Соединенные Штаты Америки, Канада, Россия, Франция, Испания, Греция, Австралия и другие, в которых рассматриваемая проблема является наиболее актуальной, уже на протяжении более 50 лет ведутся подобные разработки. В каждом из указанных регионов выработана своя методика прогнозирования возникновения лесных пожаров в зависимости от географической, климатической, экономической и иных особенностей той или иной области. Однако большинство стран для оценки вероятности возникновения лесных пожаров использует так называемый индекс пожароопасности.

Сам термин - «пожарная опасность» - был введен отечественным ученым В.Г. Нестеровым в 1968 г. для определения угрозы возникновения лесного пожара. В каждой стране показатель пожароопасности рассчитывается по своей методике и учитывает свой набор большого числа входных параметров таких как метеоданные, солнечная радиация, тип и свойства лесных горючих материалов, грозовая активность и антропогенная нагрузка.

В США в 1972 году была разработана система National Forest Fire Danger Rating System (NFFDRS) [73]. В Канаде с 1968 года используется система CFFDRS (Canadian Forest Fire Danger Rating System) [144]. У нас в стране общие требования по мониторингу и прогнозированию лесных пожаров и чрезвычайных лесопожарных ситуаций регулируются ГОСТ «Безопасность в чрезвычайных ситуациях. Мониторинг и прогнозирование лесных пожаров. Общие требования» [42]. Степень пожарной опасности в лесу по условиям погоды должна определяться по принятому в лесном хозяйстве комплексному показателю В. Г.Нестерова [86], который вычисляется на основе данных о температуре воздуха, температуре точки росы и количестве выпавших осадков, полученных с региональных метеостанций.

По результатам исследований указанные методики показали наилучшие эксплуатационные качества и на их основе была разработана так называемая Европейская система - European Forest Fire Risk Forecasting System (EFFRFS), которая применяется на территории Южной Европы [71].

Какой бы подход из вышеперечисленных не был выбран для определения пожароопасности, в любом случае, чем раньше в соответствии с ним будет получен показатель критерия пожароопасности, тем раньше могут быть проведены профилактические работы по предупреждению пожаров. Другими словами, без прогнозирования в данной области не обойтись.

Несмотря на разнообразие подходов по получению оптимального в соответствии с установленными критериями прогноза, не существует единого уникального способа. Кроме того, постоянное стремление к повышению

Похожие диссертации на Гибридный алгоритм прогнозирования и комплекс реализующих его программ