Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах Симонов, Дмитрий Лазаросович

Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах
<
Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Симонов, Дмитрий Лазаросович. Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах : диссертация ... кандидата технических наук : 05.27.02 / Симонов Дмитрий Лазаросович; [Место защиты: Сарат. гос. техн. ун-т].- Саратов, 2011.- 123 с.: ил. РГБ ОД, 61 11-5/2739

Введение к работе

Актуальность проблемы. Лампы бегущей волны (ЛБВ) остаются одним из основных типов электровакуумных приборов СВЧ. ЛБВ используются в качестве выходных широкополосных усилителей аппаратуры радиосвязи, обеспечивающей передачу информации на большие расстояния, применяются в бортовой и наземной аппаратуре систем спутниковой связи, а также в качестве усилителей станций магистральных радиорелейных линий связи и в передатчиках радиолокационных станций различного назначения.

В системах спутниковой связи широкое применение находят узкополосные спиральные ЛБВ с шириной рабочей полосы не более 5 – 10%. К этим ЛБВ предъявляется комплекс противоречивых требований, обусловленный условиями их работы в бортовой и наземной радиотехнической аппаратуре систем спутниковой связи.

Кроме необходимости получения высокого КПД это, прежде всего – требование минимальных нелинейных искажений усиливаемых сигналов. В системах спутниковой связи необходимо усиливать либо один сигнал, либо одновременно несколько сигналов с близкими частотами. Поэтому в ЛБВ, как и в любом нелинейном элементе, возникают следующие искажения: изменение фазы сигнала на выходе в зависимости от уровня входного сигнала, появление в спектре выходного сигнала составляющих с частотами, кратными частотам усиливаемых сигналов, а также сигналов на суммарной частоте, появление комбинационных составляющих. Операторы спутниковой связи выдвигают жесткие требования к уровню комбинационных составляющих. Например, по регламенту ОАО «Российские космические системы» уровень комбинационных составляющих третьего порядка должен составлять не более -20 дБ от уровня полезных сигналов.

В результате приходится снижать выходную мощность ЛБВ до достижения слабонелинейного (рабочего) участка амплитудной характеристики. Выходная мощность при этом должна быть на 3… 6 дБ меньше, чем мощность насыщения лампы. Следовательно, на рабочем участке сильно уменьшается электронный КПД. Поэтому для повышения КПД спутниковых ЛБВ обычно применяют рекуперацию энергии электронов в многоступенчатом коллекторе.

Однако в режиме подачи постоянных потенциалов на ступени коллектора возможности для увеличения КПД за счет рекуперации ограничены. Важным стимулом к повышению КПД и, следовательно, к уменьшению массы спутниковой ЛБВ, остаются экономические требования. Например, уменьшение мощности источника питания на 1 Вт дает экономию в 5500 евро, а уменьшение массы на 1 кг – в 55000 евро. Поэтому для ЛБВ, используемых в системах спутниковой связи, актуальными задачами являются: увеличение КПД на слабонелинейном участке, а также уменьшение нелинейных искажений при многочастотном взаимодействии на всем участке амплитудной характеристики. Однако эти две задачи противоречивы, следовательно, решить их можно только в результате оптимизации всего комплекса выходных параметров СВЧ усилителя, включая параметры вторичных источников электропитания.

Улучшению выходных параметров спутниковых ЛБВ посвящено много теоретических исследований, связанных с именами известных отечественных и зарубежных ученых: Кудряшова В.П., Мякинького Ю.П., Милютина Д.Д., Баширова Р.А., Азова Г.А., Нудельмана Я.Е., Солнцева В.А. Каца А.М., Сивякова Б.К., Wallander S., Nilsson O., Strauss R., Kosmahl H.G., Rowe J. и др.

В результате интенсивного развития теории ЛБВ с неоднородными замедляющими системами (ЗС) предсказана возможность повышения КПД до 80%. Исследованы различные пути уменьшения нелинейных искажений в многочастотном режиме.

Однако экспериментальных работ в этой области сравнительно мало. Вопросы, связанные с улучшением комплекса энергетических и массогабаритных параметров всего СВЧ усилителя, выполненного на основе ЛБВ, включая параметры и режимы работы вторичного источника питания, в режиме усиления одно- и многочастотного сигналов недостаточно изучены. Кроме того, для инженерной практики важно найти, на основе проведенных экспериментов, приближенные выражения, которые позволили бы разработчикам новых систем спутниковой связи оперативно предсказать, хотя бы на начальной стадии проектирования, оптимальные режимы работы этих приборов.

Исходя из вышеизложенного, проблема создания мощных высокоэффективных спиральных ЛБВ с минимальными габаритами и массой, предназначенных для использования в качестве выходных усилителей в станциях спутниковой связи, является актуальной в настоящее время.

Цель работы: повышение КПД спиральных ЛБВ в составе СВЧ усилителя для спутниковой связи, работающих в режиме усиления одно- и многочастотного сигналов с минимальным уровнем нелинейных искажений в рабочем диапазоне частот усиливаемых сигналов.

Для достижения поставленной цели в работе решались следующие задачи:

  1. Исследование и анализ, известных к настоящему времени, путей увеличения КПД спиральных ЛБВ и способов уменьшения нелинейных искажений при многочастотном взаимодействии.

  2. Экспериментальное исследование амплитудно-фазовых характеристик и спектра выходного сигнала в одночастотном и двухчастотном режимах работы; и разработка методик уменьшения нелинейных искажений в ЛБВ (уровня комбинационных составляющих и коэффициента амплитудно-фазового преобразования) в двухчастотном режиме, при сохранении высокой эффективности взаимодействия на основных частотах.

  3. Теоретическое и экспериментальное исследование влияния разброса по энергиям электронов в многоступенчатом коллекторе при различных режимах рекуперации и усиления сигналов в спиральной ЛБВ, и определение путей дальнейшего улучшения выходных параметров усилителя мощности, выполненного на основе этого прибора.

  4. Обобщение результатов проведенных исследований. Выработка рекомендаций для создания промышленного выпуска усилителей, выполненных на основе спутниковых ЛБВ, соответствующих современному уровню технического прогресса.

Научные положения и результаты, выносимые на защиту:

  1. Для существенного снижения уровня комбинационных составляющих третьего порядка (на 10 – 15 дБ) в ЛБВ, работающей в двухчастотном режиме усиления, достаточно подать на ее вход третий дополнительный немодулированный сигнал с амплитудой, соответствующей уровню насыщения по суммарной выходной мощности, отстроенный по частоте на 5 – 15%, с произвольной начальной фазой.

  2. Подача в двухчастотном режиме на вход ЛБВ дополнительного немодулированного сигнала с отстройкой по частоте на 5 – 20% позволяет уменьшить коэффициент амплитудно-фазового преобразования в 2 – 3 раза при незначительном снижении электронного КПД.

  3. Выбор значений потенциалов на секциях многоступенчатого коллектора в соответствии с энергетическим спектром электронов на выходе из пространства взаимодействия ЛБВ, в режимах с выходной мощностью на 6 – 15 дБ меньше максимального уровня, позволяет увеличить КПД в этих режимах в 2 – 3 раза.

Методы исследования, достоверность и обоснованность результатов. В работе использованы хорошо апробированные эмпирические и теоретические методы исследования в области вакуумной СВЧ электроники. Решения задач оптимизации базируются на экспериментальных данных и известных положениях теории ЛБВ и методах математического моделирования. Достоверность полученных результатов подтверждается корректностью применяемых математических моделей, их адекватностью по известным критериям оценки изучаемых процессов взаимодействия электронов с СВЧ полем; хорошим совпадением полученных теоретических результатов с данными эксперимента; а также c результатами промышленной эксплуатации созданных ЛБВ и СВЧ усилителей на их основе, и совпадением с результатами, полученными другими авторами в области разработки спутниковых ЛБВ, опубликованными как в России, так и за рубежом.

Научная новизна работы:

  1. Впервые предложена и экспериментально апробирована методика существенного снижения уровня комбинационных составляющих третьего порядка (на 10 – 15 дБ) в ЛБВ, работающей в двухсигнальном режиме усиления, за счет подачи дополнительного немодулированного сигнала с отстройкой по частоте на 5 – 15%.

  2. Экспериментально установлено, что подача на вход ЛБВ, работающей в двухсигнальном режиме усиления на частотах f1 и f2, третьего дополнительного сигнала с произвольной начальной фазой и отстройкой «вверх-вниз» по частоте относительно основных сигналов в пределах 5 – 20% позволяет снизить коэффициент амплитудно-фазового преобразования основных сигналов более чем в 3 – 4 раза в режиме насыщения и в 2 – 3 раза в слабонелинейном режиме при незначительном снижении суммарного электронного КПД на частотах f1 и f2.

  3. Разработана методика, обеспечивающая значительное (в 2-3 раза) увеличение КПД ЛБВ с рекуперацией электронов в 4-х ступенчатом коллекторе (при допустимом уровне нелинейных искажений) за счет программируемого автоматического изменения величин напряжений, подаваемых на секции этого коллектора от источника вторичного питания.

  4. Предложены приближенные математические модели для оперативной оценки предельно достижимого значения электронного КПД спиральной ЛБВ с неоднородной ЗС. Эти модели получены методом планируемого эксперимента, основанного на данных натурных экспериментов, проведенных на реальных образцах приборов, и адекватно описывают поведение электронного КПД в режиме насыщения в зависимости от подводимой мощности, первеанса пучка и сопротивления связи ЗС.

Практическая значимость заключается в следующем:

  1. Предложенные методики уменьшения уровня комбинационных составляющих и коэффициента амплитудно-фазового преобразования в двухчастотном режиме работы ЛБВ путем подачи на её вход третьего независимого сигнала легко реализуются на практике, и их применение улучшает качество передаваемого сигнала по системам космической связи.

  2. Показана необходимость создания новых конструкций вторичных источников питания с автоматическим регулированием величин потенциалов на секциях многоступенчатого коллектора в зависимости от режимов работы ЛБВ. За счет увеличения КПД ЛБВ в усилителе с таким источником питания, может быть значительно уменьшены габариты и масса всего устройства.

  3. Результаты работы могут быть использованы в НИОКР, проводимых в СГТУ и на предприятиях радиоэлектронного профиля.

  4. Результаты работы могут быть использованы в учебном процессе в Вузах, ведущих подготовку специалистов по специальности 210105 (Электронные приборы и устройства).

Апробация работы. Работа выполнена на кафедре «Электронные приборы и устройства» Саратовского государственного технического университета и ФГУП «НПП «Алмаз» в период 2007 – 2011 г. Результаты работы докладывались и обсуждались на: Всероссийской научно-практической конференции молодых ученых «Инновации и актуальные проблемы техники и технологий» (Саратов, СГТУ, 2009); научно-технической конференции «Электроника и вакуумная техника: приборы и устройства. Технология. Материалы» (Саратов, СГУ, 2009); 9-й Международной научно-технической конференции «Актуальные проблемы электронного приборостроения» (Саратов, СГТУ, 2010).

Диссертационная работа выполнялась в соответствии с планами НИР и ОКР ФГУП «НПП «Алмаз» и СГТУ.

Публикации. По материалам диссертации опубликовано 9 печатных работ, в том числе 2 работы в рекомендованных ВАК изданиях.

Личный вклад автора заключается в участии в формулировке цели и постановке задач исследовании, проведении численных расчетов, необходимых для интерпретации полученных экспериментальных данных. Автор является исполнителем представленных экспериментальных исследований. Обсуждение полученных теоретических и экспериментальных результатов проводилось совместно с соавторами научных статей.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка использованных источников и приложения. Ее объем 121 стр., включая 27 рисунков, 7 таблиц, 48 наименований цитируемых источников.

Похожие диссертации на Улучшение выходных параметров спиральных спутниковых ЛБВ в одно- и многочастотном режимах