Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники Бурцев, Антон Александрович

Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники
<
Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Бурцев, Антон Александрович. Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники : диссертация ... кандидата технических наук : 05.27.02 / Бурцев Антон Александрович; [Место защиты: Сарат. гос. техн. ун-т].- Саратов, 2011.- 128 с.: ил. РГБ ОД, 61 11-5/1518

Введение к работе

Актуальность проблемы. Для создания систем формирования мощных электронных потоков в приборах СВЧ электроники представляют интерес источники электронов на основе автоэлектронной эмиссии из углеродных микро- и наноструктур. Активно ведутся работы по созданию автоэмиссионных катодов (АЭК) для конструкций катодно-сеточных узлов (КСУ) и электронных пушек, обладающих высокой плотностью тока автоэмиссии, отсутствием подогрева, безынерционностью, экспоненциально высокой крутизной вольт-амперной характеристики, малой чувствительностью к внешней радиации и пр. Благодаря применению электронно-оптических систем с автоэмиссионными источниками электронов существенно повышается быстродействие радиоэлектронной аппаратуры, а также появляется возможность создания миниатюрных вакуумных приборов терагерцового диапазона с плотностью тока 100 А/см2 и более.

Основная трудность в создании стабильных АЭК состоит в технологических особенностях применяемых материалов и сложностях получения геометрически воспроизводимых многоострийных катодных и катодно-сеточных структур.

Особое место среди различных АЭК занимают матричные многоострийные автоэмиссионные катоды из стеклоуглерода, отличающиеся монолитностью эмиссионной структуры, высокой стабильностью в режиме автоэмиссии в сильных электрических полях, наряду с пониженной адсорбцией остаточных газов по сравнению с металлами, долговечностью при токоотборе со средней плотностью тока на катоде 10100 А/см2, воспроизводимостью катодных структур. Это обусловливает перспективность их использования в конструкциях электронно-оптических систем ЭВП.

Более сорока лет назад в США были начаты работы по созданию матричных автоэмиссионных катодов, получивших в результате наименование катодов Спиндта. Впоследствии появилось множество публикаций по разработке и конструированию различного типа АЭК и КСУ, построенных на принципах конструкции Спиндта, которые продолжаются и сегодня. Существенный вклад в развитие физики и технологии автоэмиссионных источников электронов внесли и российские ученые: Бондаренко Б.В, Шешин Е.П., Рахимов А.Т., Гуляев Ю.В., Синицын Н.И., Григорьев Ю.А., Торгашов Г.В., Горфинкель Б.И., Фурсей Г.Н. и др.

Появление новых пленочных углеродных наноструктурных материалов открывает пути и возможности для использования их в качестве автоэмиссионных источников электронов. Тем не менее использование монолитных АЭК из стеклоуглерода в мощных приборах вакуумной СВЧ электроники в настоящее время также можно считать актуальной задачей эмиссионной электроники.

В силу недостаточности теоретического, технологического и экспериментального исследования особенностей изготовления и работы АЭК в вакуумных СВЧ приборах была сформулирована цель данной работы.

Цель работы: разработка современной технологии изготовления монолитных стеклоуглеродных матричных многоострийных структур для АЭК, исследование их эмиссионных характеристик и разработка конструкций электронных пушек для эффективных СВЧ приборов с микросекундным временем готовности.

Для достижения поставленной цели были решены следующие научно-технические задачи:

проанализированы и выбраны обоснованные технологические операции получения микроразмерных матричных структур из стеклоуглерода с упаковкой 106-107 см-2;

проведена отработка процесса группового плазмохимического микрозаострения цилиндрических выступов в низкотемпературной кислородной плазме для получения 3D поверхности матричной многоострийной автоэмиссионной микроструктуры из стеклоуглеродных конических острий с периодом структуры 10-5 мкм;

исследованы структурные и эмиссионные свойства матричного автоэмиссионного катода из стеклоуглерода;

разработаны конструкции экспериментальных диодных макетов с АЭК и исследовано влияние межэлектродного зазора на вольтамперные характеристики;

разработана экспериментально-расчетная методика оценки величины работы выхода углеродных материалов, применяемых для АЭК;

проведено компьютерное моделирование формирования электронных потоков в электронных пушках с матричными АЭК;

разработаны конструкции экспериментальных образцов АЭК для электровакуумных приборов сверхвысокочастотной электроники с микросекундным временем готовности.

Методы и средства исследований. При выполнении работы использованы современные методы экспериментального анализа с применением принципов вакуумной микроэлектроники, электронной оптики, а также современные средства компьютерного моделирования.

Достоверность полученных результатов подтверждается воспроизводимостью результатов, полученных в ходе экспериментальных исследований, а также апробацией результатов работы на опытных образцах АЭК и их соответствием фундаментальным законам автоэмиссии.

Научные положения и результаты, выносимые на защиту:

1. Предложена и реализована технология группового микро-, наноразмерного заострения путем воздействия низкотемпературной плазмой ВЧ разряда (f=13,56 МГц) в кислородной среде на монолитную углеродную структуру из многоэлементной системы цилиндрических микроразмерных выступов с плотностью упаковки N=(106-107) см-2 при температуре нагрева 50-600С и давлении 66-70 Па, обеспечивающая формирование многоострийной матричной углеродной структуры с наноразмерным рельефом вершин.

2. Автоэлектронная эмиссия многоострийных стеклоуглеродных матриц в микродиодах сопровождается ростом автоэмиссионного тока на 3-4 порядка при увеличении межэлектродного зазора и при сохранении постоянной средней напряженности электростатического поля, что связано с нелинейными изменениями в распределении электростатического поля вблизи поверхности АЭК.

3. Экспериментально установлено, что автоэмиссионный ток в диоде с многоострийным матричным катодом из стеклоуглерода при изменении температуры окружающей среды в интервале от 20 до 5000С существенно возрастает, что является следствием уменьшения величины работы выхода материала многоострийного матричного автоэмиссионного катода.

4. На основе применения компьютерного траекторного анализа формируемых электронных потоков предложены конструкции автоэмиссионных электронных пушек с анодной модуляцией, низковольтным сеточным управлением и магнитным сопровождением, позволяющие осуществлять проектирование и разработку вакуумных приборов СВЧ на основе АЭК с микросекундным временем готовности (t10-5c).

Научная новизна работы:

впервые предложен усовершенствованный технологический маршрут получения многоострийных автоэмиссионных микро- наноструктурных матричных катодов из монолитных углеродных материалов на примере стеклоуглерода СУ-2000, включающий термохимическую микроразмерную 3D обработку поверхности углеродных пластин в среде водорода, плазмохимическое групповое микро-, нанозаострение эмиссионных центров в сочетании с технологией прецизионной фотолитографии с возможностью реализации плотности упаковки острий N=(106-108) см-2;

получены матричные многоострийные автоэмиссионные катоды из монолитного стеклоуглерода СУ-2000 с плотностью упаковки N=(106-4106) см-2, с наноразмерным рельефом на вершинах острий, обеспечивающие получение плотности тока АЭК более 1 А/см2;

теоретически и экспериментально показано, что при увеличении межэлектродного зазора в диоде до значений d=2,5l (l-период микроструктуры) наблюдается значительный рост автоэмиссионного тока при постоянной средней напряженности электрического поля; при этом имеет место увеличение эффективной площади эмиссии и соответственно уменьшается плотность тока в эмиссионных центрах, что указывает на возможность долговременной работы АЭК;

предложена и реализована экспериментально-расчетная методика оценки величины работы выхода материалов АЭК, в том числе для наноструктурированных углеродных материалов; по данной методике проведена оценка величины работы выхода материала одностенной углеродной нанотрубки с учетом ее геометрии и экспериментальным ВАХ, которая составила 4,89±0,1 эВ;

проведено 3D компьютерное моделирование автоэмиссионных электронных пушек, формирующих многолучевые электронные пучки в неоднородных магнитных полях и предложены новые конструкции: многолучевой электронной пушки с монолитным, углеродным многоострийным АЭК, многолучевой электронной пушки с криволинейной оптикой со сферическим АЭК с пленочной углеродной наноструктурой и магнетронно-инжекторной пушки.

Практическая значимость. Результаты работы могут быть использованы при разработке современных и перспективных СВЧ электровакуумных приборов. Технология изготовления матричных многоострийных АЭК прошла апробацию на ФГУП «НПП «Алмаз», конструкции электронных пушек на основе АЭК могут быть использованы в электронно-оптических системах в качестве базовых конструкций в ЛБВ сантиметрового диапазона и многолучевых клистронах. Полученные экспериментальные результаты и методики, а также численные модели позволят разработать ЭВП СВЧ с микросекундным временем готовности.

Материалы исследований внедрены в учебный процесс при подготовке инженеров-специалистов на кафедрах "Электронное машиностроение и сварка" и "Электронные приборы и устройства" СГТУ.

Апробация работы. Материалы диссертационной работы докладывались на: научно-практической конференции, посвященной 50-летию ФГУП «НПП «Алмаз» «Электронные приборы и устройства СВЧ» (Саратов, 2007); научно-практической конференции «Актуальные проблемы электронного приборостроения АПЭП» (Саратов, 2008, 2010); научно-технической конференции «Электроника и вакуумная техника: приборы и устройства. Технология. Материалы» (Саратов, 2009); Всероссийской научно-практической конференции молодых ученых «Инновации и актуальные проблемы техники и технологий» (Саратов, 2009), а также на школе-семинаре "Наноструктуры, модели, анализ и управление" МИЭМ (Москва, 2008).

Публикации. По теме диссертации опубликовано 11 работ (4 статьи в журналах, рекомендованных ВАК РФ, 7 статей в научных сборниках).

Личный вклад автора заключается в постановке цели и задач исследований, проведении численных расчетов, необходимых для интерпретации полученных экспериментальных данных. Автор является исполнителем представленных экспериментальных исследований. Обсуждение полученных теоретических и экспериментальных результатов проводилось совместно с соавторами научных статей.

Структура и объем диссертации. Диссертация состоит из введения, четырех глав, заключения, списка использованной литературы, включающего 113 наименований и приложения. Диссертация изложена на 126 листах машинописного текста, содержит 49 рисунков и 10 таблиц.

Похожие диссертации на Матричные автоэмиссионные катоды из монолитных углеродных материалов для приборов вакуумной электроники