Введение к работе
Актуальность темы
Вещество, находящееся в конденсированном состоянии, является основным материалом для технологии преобразования световой энергии в другие виды энергии и фотокатализа. При этом часто применяются молекулы органических красителей в качестве сенсибилизаторов. На основе полупроводниковых кристаллов реализуются твёрдотельные лазеры и светодиоды. Во всех случаях стоит вопрос о повышении квантового выхода оптических переходов.
После работы Парселла во многих оптических явлениях было найдено изменение вероятности спонтанного перехода квантовых систем, находящихся вблизи или внутри резонаторов. В качестве таких резонаторов могут служить серебряные и золотые наночастицы с диаметром 10-70 нм, у которых плазменные колебания попадают в видимую область спектра. В частности, изучена зависимость коэффициента усиления люминесценции молекул от концентрации агрегатов металлических наночастиц в растворе. В работах показано, что коэффициент усиления люминесценции отдельных молекул существенно зависит от расстояния между ними и металлической наночастицей. Эта зависимость сначала монотонно возрастает, начиная с расстояний 40 - 30 нм. Затем на расстояниях 3 - 2,5 нм имеет максимум, после чего коэффициент усиления резко уменьшается. На расстоянии меньше 2 нм наблюдается тушение люминесценции. Отсюда можно сделать вывод о том, что коэффициент усиления квантовых систем, находящихся в распределённых неоднородных средах или структурах (растворы молекул, содержащие металлические наночастицы, сенсибилизированные микрокристаллы в различных матрицах), должен сложным образом зависеть от концентрации металлических наночастиц. При этом он должен определяться как распределением наночастиц в растворе, так и отношением долей числа молекул и микрокристаллов, попадающих в область максимального усиления и область непосредственной близости их к наночастицам. Однако это обстоятельство не исследовано. Интерес к таким неоднородным структурам обусловлен тем, что они могут быть применены как источники люминесцентного излучения или ГКР, как среды, в которых может эффективно проходить фотохимический катализ при повышенной фотостабильности адсорбированных молекул, а также как активные среды для усиления излучения. Такие неоднородные системы чаще всего встречаются на практике. Поэтому исследование изменения интенсивности люминесценции в таких системах имеет практическое значение и является актуальным.
Далее, усиление слабого свечения имеет самостоятельное значение. К такому свечению можно отнести люминесценцию при двухфотонном антистоксовом возбуждении кристаллов. Действительно, двухфотонное возбуждение люминесценции относится к одному из способов частотного преобразования,
применяемого, например, для визуализации ближнего инфракрасного диапазона. В этом случае усиление интенсивности свечения имеет принципиальное значение. Подобное возбуждение обычно наблюдается в кристаллофосфорах, люминесценция которых имеет рекомбинационный характер. Однако возможность усиливающего влияния металлических наночастиц в этом случае вообще не исследована. Поэтому исследование усиления свечения кристаллофосфоров при антистоксовом возбуждении является также актуальным.
В связи с этим данная работа посвящена исследованию влияния наночастиц серебра в результате плазмонного резонанса на люминесценцию молекул органических красителей, находящихся в распределённых неоднородных структурах, а также возможности усиления рекомбинационного свечения микрокристаллов хлористого серебра при антистоксовом возбуждении.
Для исследования антистоксового свечения, как впрочем, и любых других люминесцентных исследований, необходимо знать энергетические состояния в запрещённой зоне кристаллофосфора. Существует очень информативный и чувствительный метод изучения примесных состояний, который заключается в измерении светосуммы фотостимулированной вспышки люминесценции (ФСВЛ). Однако он применим только для энергетических состояний, лежащих в запрещённой зоне кристалла выше уровней центров люминесценции. Для уровней, лежащих ниже, требуется модернизация метода ФСВЛ. Это также входило в задачи диссертации.
В качестве объектов исследования выбраны композиты на основе желатина, содержащие микрокристаллы AgCl(I), молекулы органических красителей и наночастицы серебра. Используются красители: метиленовый голубой (МГ), акридиновый желтый (АЖ) и малахитовый зеленый (МЗ), имеющие полосы поглощения в различных областях спектра; наночастицы (НЧ) серебра из препарата «колларгол» и НЧ серебра, полученные путем фотолиза светочувствительных кристаллов; микрокристаллы твёрдых растворов замещения , являющиеся типичными представителями соединений с ионно-ковалентной связью и обладающие антистоксовой люминесценцией (АСЛ).
Цель диссертации состоит в выявлении усиливающего влияния наночастиц серебра в результате плазмонного резонанса на рекомбинационное свечение сенсибилизированных продуктами низкотемпературного фотостимулиро-ванного процесса и молекулами сенсибилизаторов кристаллов с ионно-ковалентной связью, а также на люминесценцию композитов на основе желатина, содержащих молекулы органических красителей и наночастицы серебра, при стоксовом и антистоксовом возбуждении.
Отсюда вытекают следующие задачи:
определение коэффициента усиления люминесценции композитов на основе желатина, содержащих серебряные наночастицы и некоторые органические молекулы;
доказательство усиливающего влияния серебряных наночастиц на ре-комбинационное свечение кристаллов хлориодистого серебра при двухфотон-ном антистоксовом возбуждении;
разработка метода исследования собственных глубоких примесных состояний кристаллофосфоров, обладающих рекомбинационным свечением и фо-тостимулированной вспышкой, а также состояний, возникающих при адсорбции органических молекул.
Научная новизна работы заключается в том, что:
- определен коэффициент усиления люминесценции композитов на осно
ве желатина, содержащих молекулы красителей (МГ или АЖ) и серебряные
НЧ, при различных концентрациях всех составляющих;
-доказан эффект усиления рекомбинационного свечения микрокристаллов хлориодистого серебра под влиянием серебряных наночастиц;
показано усиление на порядок рекомбинационного свечения кристалла в условиях резонанса антистоксового возбуждения адсорбированных молекул МГ с плазмонными колебаниями НЧ;
разработаны и апробированы методы исследования глубоких примесных состояний кристаллов хлористого серебра, возникающих в результате низкотемпературного фотохимического процесса и при адсорбции молекул органических красителей, основанные на временной отсечке вспышки люминесценции и высвечивающем действии измерительного светового потока.
Практическая значимость работы состоит в получении новых достоверных сведений о влиянии металлических НЧ на люминесценцию распределённых неоднородных структур, содержащих микрокристаллы галогенидов серебра и молекулы органических красителей, антистоксову люминесценцию сенсибилизированных микрокристаллов AgCl(I), определении оптимальных условий для возникновения усиления свечения. Полученные результаты являются важными с точки зрения создания новых сред для регистрации информации, материалов волоконной оптики и систем управления параметрами оптических излучений.
Основные результаты и положения, выносимые на защиту:
-
Методики исследования примесных электронных состояний люминес-цирующих кристаллов, энергетические уровни которых расположены вблизи и ниже уровней центров люминесценции.
-
В композитах на основе желатина, содержащих молекулы органических красителей и наночастицы серебра, происходит возрастание интенсивности люминесценции молекул красителей в результате увеличения вероятности
спонтанного перехода с возбуждённого состояния в случае, когда он находится в резонансе с плазменными колебаниями в наночастицах.
-
В композитах на основе желатина, содержащих кристаллы AgCl(I) и наночастицы серебра, в условиях резонанса рекомбинационных переходов кристаллов AgCl(I) с плазменными колебаниями в наночастицах серебра наблюдается усиление интенсивности рекомбинационного свечения кристаллов, обусловленное увеличением вероятности этих переходов.
-
В композитах на основе желатина, содержащих кристаллы AgCl(I), сенсибилизированные молекулами красителя метиленового голубого, и наночастицы серебра, рекомбинационное свечение кристаллов при двухфотонном возбуждении под влиянием наночастиц увеличивается, что происходит благодаря наличию резонанса электронных переходов молекул красителя с плазменными колебаниями в наночастицах.
Апробация работы
Основные результаты работы докладывались и обсуждались на следующих конференциях: Всероссийских конференциях «Физико-химические процессы в конденсированном состоянии и на межфазных границах» (Воронеж, 2008., 2010.); 5-й Международной научно-практической конференции «Составляющие научно-технического прогресса» (Тамбов, 2009.); International conference «Organic nanophotonics» (St. Petersburg, 2009.).
Публикации
По результатам диссертации опубликовано 13 работ, в том числе 4 - в изданиях, рекомендованных ВАК РФ, получен 1 патент РФ.
Личный вклад автора
Работа выполнена на кафедре оптики и спектроскопии Воронежского госуниверситета. Все вошедшие в диссертацию результаты выполнены лично автором или совместно с преподавателями и аспирантами кафедры. Автором осуществлено методическое обоснование использованных в работе методов исследования и проведены экспериментальные измерения. Проведен анализ и интерпретация полученных результатов. Сформулированы основные выводы и научные положения, выносимые на защиту.
Структура и объем диссертации
Диссертация состоит из введения, четырех глав, заключения и списка литературы из 121 наименования. Работа изложена на 135 страницах, содержит 4 таблицы и 57 рисунков.