Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях Чащина, Вера Геннадиевна

Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях
<
Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Чащина, Вера Геннадиевна. Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях : диссертация ... доктора физико-математических наук : 01.04.07 / Чащина Вера Геннадиевна; [Место защиты: Ур. гос. техн. ун-т].- Екатеринбург, 2011.- 382 с.: ил. РГБ ОД, 71 12-1/22

Введение к работе

Актуальность темы. Формирование мартенситных кристаллов, как и полос сдвига, связанное с процессом локализации деформации, привлекает внимание большого числа исследователей. В рамках общефизического принципа близкодействия основное внимание должно уделяться выявлению физических носителей сдвига, процессам их генерации и распространения. Построение содержательных моделей таких процессов представляет актуальную задачу физики конденсированного состояния. Необходимыми этапами при создании моделей, очевидно, являются: анализ существующего экспериментального материала, физическая и математическая формулировки моделей и постановка новых экспериментов с целью проверки полученных выводов. В данной работе основное внимание уделяется развитию и построению динамических моделей формирования мартенситных кристаллов при спонтанных, в ходе охлаждения, реконструктивных мартенситных превращениях (МП) на примерах у-а (ГЦК - ОЦК или ОЦТ) МП в сплавах железа, ОЦК-ГПУ МП в титане и варианта ГЦК-ГПУ МП, являющегося простейшим примером политипных перестроек. В качестве базовых используются представления волновой модели роста мартенсита (М.П. Кащенко с соавторами). Принципиальное продвижение в развитии динамической теории МП связано с пониманием пути перехода от пороговых деформаций к финишным, превышающим пороговые на два-три порядка, что позволит провести сравнение расчетных и экспериментальных данных для полных наборов морфологических признаков. Существенного продвижения, кроме того, можно ожидать при дополнительной разработке вопроса об оптимальных условиях генерации управляющих волн применительно к решению проблем формирования двойникованных мартенситных кристаллов со сверхзвуковыми скоростями и существования критического размера зерна исходного аустенита для протекания МП.

Формирование полос сдвига в ГЦК, ОЦК и ГПУ - монокристаллах с ориентировкой границ полос, отличающейся от плоскостей легкого скольжения представляет интерес при интерпретации особенностей деформационной картины на стадии развитой пластической деформации, а также при описании образования мартенсита деформации и возникновения новых дислокационных центров зарождения для мартенсита охлаждения. Ответы на эти вопросы требует учета сильного взаимодействия дислокаций двух систем сдвига с пересекающимися плоскостями скольжения. Отражение специфики процесса связано с построением модели генерации кристонов - носителей сдвига супердислокационного типа.

Успех построения моделей помимо упорядочения имеющейся информации и подтверждения (косвенного или прямого) справедливости развиваемых концепций открывает возможность постановки новых задач исследования.

Цель работы состоит в том, чтобы построить физические модели, развивающие динамические теории формирования мартенситных кристаллов до степени полноты описания, свидетельствующей об адекватности моделей наблюдаемой картине мартенситной реакции. Достижение этой цели потребовало решения комплекса задач.

  1. Уточнения аксиоматики модели гетерогенного зарождения и волнового управления ростом мартенситного кристалла.

  2. Интерпретации механизмов ОЦК-ГПУ и ГЦК-ОЦК (или ОЦТ) мартенситных превращений для случая, когда управляющий волновой процесс (УВП), являющийся суперпозицией пары волновых пучков с ортогональными волновыми векторами, инициирует наибыстрейшую перестройку определенных плоскостей исходной фазы (с последующей перетасовкой трансформированных плоскостей).

  3. Разработки описания перехода от пороговых деформаций исходной фазы, переносимых УВП, к финишным деформациям, превышающим пороговые на два-три порядка для недвойникованных кристаллов.

  4. Разработки динамических моделей формирования пластин мартенсита с тонкой структурой двойников превращения, совместимых со сверхзвуковой скоростью роста мартенситных кристаллов, путем включения в состав УВП наряду с относительно длинноволновыми компонентами и коротковолновых составляющих.

  5. Анализа распределений основной и дополнительной компонент регулярной слоистой структуры, включая случай регулярной двойниковой структуры.

  6. Распространения описания перехода от пороговых деформаций к финишным на случай двойникованных кристаллов а - мартенсита.

  7. Учета влияния квазипродольного характера длинноволновых компонент УВП на ориентацию главных осей порогового поля деформаций и расчетные значения макроскопических морфологических признаков.

  8. Учета влияния динамической неоднородности, связанной с начальным возбужденным состоянием, на реализацию условий, оптимальных для процесса генерации управляющих волн неравновесными электронами.

  9. Вывода формулы для критического размера Dc зерна аустенита и установления причины его зависимости от состава сплава.

  10. Оценки макроскопической доли мартенсита в рамках симметричной модели ортогонального сочленения мартенситных кристаллов при самоподобной кинетике формирования ансамблей мартенситных кристаллов разных поколений с учетом следствий зависимости Dc от значимых физических параметров.

  11. Применения методологии кристонной модели для идентификации носителей пороговой деформации при формирования полос сдвига и кристаллов мартенсита деформации, а также центров зарождения мартенсита охлаждения в образцах, подвергнутых предварительной пластической деформации в кристаллах с ГЦК, ОЦК и ГПУ - решетками.

  12. Формулировки качественной модели УВП, включающей согласованное действие продольных и поперечных волн смещений атомов с коллинеарными волновыми векторами, для описания ряда политипных переходов с нулевым макросдвигом.

Научная новизна. Впервые получены следующие основные результаты.

    1. Уточнена аксиоматика гетерогенного зарождения мартенситного кристалла: поперечные размеры d12 начального возбужденного состояния в форме вытянутого параллелепипеда составляют порядка сотой доли от среднего междислокационного расстояния (в частности, от диаметра зерна), причем выполняется условие d12 < ^1,2 /2, где X12 - длины волн в составе УВП.

    2. Предложены механизмы ОЦК-ГПУ и у-а (ГЦК- ОЦК или ОЦТ) мартенситных превращений для случая, когда УВП инициирует наибыстрейшую перестройку определенных плоскостей исходной фазы.

    3. Разработан алгоритм описания перехода от пороговых деформаций исходной фазы, переносимых УВП, к финишным деформациям.

    4. Предложены динамические модели формирования пластин мартенсита с тонкой структурой двойников превращения, совместимых со сверхзвуковой скоростью роста мартенситных кристаллов.

    5. Осуществлен анализ распределений основной и дополнительной компонент регулярной слоистой структуры, включая случай регулярной двойниковой структуры.

    6. Описание перехода от пороговых деформаций к финишным распространено на случай двойникованных кристаллов а-мартенсита.

    7. Проведен учет влияния квазипродольного характера длинноволновых компонент УВП на ориентацию главных осей порогового поля деформаций и расчетные значения макроскопических морфологических признаков.

    8. Проведен учет влияния динамической неоднородности, связанной с начальным возбужденным состоянием, на реализацию условий, оптимальных для процесса генерации управляющих волн неравновесными электронами.

    9. Осуществлен вывод формулы для критического размера зерна Dc аустенита и дан анализ следствий зависимости Dc от значимых физических параметров.

    10. Получена оценка макроскопической доли мартенсита в рамках симметричной модели ортогонального сочленения мартенситных кристаллов при самоподобной кинетике формирования ансамблей мартенситных кристаллов разных поколений.

    11. Разработаны кристонные модели, способствующие идентификации центров зарождения мартенсита охлаждения в образцах, подвергнутых предварительной пластической деформации, а также носителей пороговой деформации для формирования полос сдвига и кристаллов мартенсита деформации.

    12. Предложена качественная модель УВП, включающая согласованное действие продольных и поперечных волн смещений атомов с коллинеарными волновыми векторами, для описания ГЦК - ГПУ перехода с нулевым макросдвигом.

    Защищаемые положения:

    1. Процесс формирования кристалла при реконструктивном мартенситном превращении начинается с возникновения в упругом поле дислокации возбужденного (колебательного) состояния, обеспечивающего возможность быстрого (сверхзвукового) формирования кристалла в области наложения пороговых деформаций пары управляющих волн, описываемых связанными уравнениями. Поперечные размеры d12 начального возбужденного состояния в форме вытянутого параллелепипеда порядка сотой доли от среднего междислокационного расстояния (в частности, от диаметра зерна), причем выполняется условие d12 < ^1,2 /2, где X12 - длины волн в составе УВП.

        1. Для мартенситных превращений ОЦК - ГПУ и ГЦК - ОЦК (или ОЦТ) возможна реализация наибыстрейших перестроек наиболее плотных атомных плоскостей исходной фазы, инициируемая УВП, несущим пороговую деформацию типа «растяжение - сжатие», причем отношение деформаций остается неизменным при переходе от пороговых к финишным значениям, превышающим пороговые на два - три порядка. Это позволяет выразить все наблюдаемые морфологические признаки недвойникованных мартенситных кристаллов в виде аналитических зависимостей от отношения скоростей управляющих волн, в том числе задать материальные ОС.

        2. Сверхзвуковое формирование регулярных слоистых структур (РСС), включая двойникованные мартенситные кристаллы, является следствием согласованного действия относительно длинноволновых смещений (ответственных за формирование габитусной плоскости) и относительно коротковолновых смещений (ответственных за формирование основной компоненты РСС) и приводит к вполне определенным соотношениям долей основной и дополнительной компонент РСС.

        3. В наиболее сложном случае сверхзвукового формирования двойникованных мартенситных кристаллов количественное описание наблюдаемых макроскопических признаков (габитус, ОС, направление и величина макросдвига) в развитой динамической теории достигается при учете квазипродольного характера длинноволновых смещений в составе УВП. Учет квазипродольности существен, поскольку отклонения векторов поляризации от волновых нормалей составляют около 27 и 24. Использование приближения продольных волн допустимо при качественном описании.

        4. Возбужденное состояние межфазной области на стадии быстрого роста кристалла требует учета дополнительного вклада в затухание s - электронов, сказывающегося на оптимальной температуре генерации управляющих волн неравновесными d - электронами. Учет соотношения между поперечным размером возбужденного состояния и размером свободного от дефектов объема позволяет осуществить вывод формулы зависимости критического диаметра зерна Dc аустенита от значимых физических параметров. Формула предсказывает существование в сплавах верхних концентрационных границ С* для МП, таких, что при С^ С*, Ms ^0 K,

        5. Характерная для стадии зарождения связь пространственных масштабов позволяет предложить модель симметричного (крестообразного) сочленения кристаллов, дающую возможность, в случае атермической макрокинетики мартенситной реакции, оценивать число поколений мартенситных кристаллов, лимитируемое минимальным размером свободного от дефектов объема, долю образовавшегося мартенсита в любом поколении кристаллов и интегральное количество мартенсита. Существенно, что оценка макропараметра осуществляется без привлечения термодинамики.

        6. Зависимость Dc от параметра |ed -ц| (ed - средняя энергия активных

        в поддержании УВП d - электронов, ц - их химический потенциал) позволяет управлять размером Dc с помощью сильного магнитного поля Н, действие которого в наибольшей степени проявляется вблизи особых концентраций С*, приводя к резкому снижению Dc до уровня Dch<c и тем самым к наблюдаемым эффектам дестабилизации аустенита, предварительно стабилизированного измельчением зерна (до размера D>Dc) или интенсивной пластической деформацией.

            1. Контактное взаимодействие дислокаций с пересекающимися плоскостями легкого скольжения является одним из стандартных механизмов образования мезоконцентраторов напряжений, способных выполнять функции модифицированных дислокационных центров зарождения для кристаллов МО и источников кристонов - носителей сдвига супердислокационного типа, распространение которых обеспечивает формирование полос сдвига (в области устойчивости исходной фазы) с границами, отличающимися от плоскостей легкого скольжения, либо инициирует формирование кристаллов мартенсита деформации на стадии пластического течения при температурах выше М8, но ниже температуры равновесия фаз Т0.

            Научная и практическая ценность работы. Полученные результаты вносят фундаментальный вклад в развитие динамической теории реконструктивных мартенситных превращений, поскольку осуществленный переход от пороговых деформаций к финишным деформациям позволил, во- первых, вести сравнение с экспериментальными данными по полному спектру наблюдаемых признаков, а во-вторых, принципиально расширил прогностические возможности теории. Применительно к волновой модели управления формированием мартенситного кристалла следует, кроме того, подчеркнуть совершенствование модели управляющего волнового процесса за счет включения в структуру УВП наряду с относительно длинноволновыми и коротковолновых смещений. Причем созданная модель свободна от искусственных допущений, характерных для предшествующего этапа исследований. Концепция УВП распространена и на описание ОЦК - ГПУ МП. В рамках кристонной модели также имеются существенные достижения, связанные с интерпретацией формирования полос сдвига в материалах с ГЦК -, ОЦК (включая В2) и ГПУ решетками. Полученная картина важна как для идентификации новых дислокационных центров зарождения мартенсита охлаждения и напряжения в аустените, подвергнутом пластической деформации, так и для выявления кристонных носителей сдвига при формировании кристаллов мартенсита деформации.

            Достигнутый уровень развития динамической теории важен для разработки экспериментальной и теоретической программ дальнейших исследований особенностей формирования мартенситных кристаллов в реальных физических средах, обладающих пространственной неоднородностью.

            Достоверность результатов работы базируется на тщательном анализе имеющихся литературных источников, прозрачности используемых физических аргументов, внутренней непротиворечивости работы и соответствии полученных выводов наблюдаемым экспериментальным фактам.

            Личный вклад автора. Автору принадлежит основная роль в постановке цели и задач исследования, выборе основных путей и методов их решения, анализе и интерпретации результатов, а также написании печатных работ. Все аналитические и численные расчеты выполнялись автором совместно с соавторами по статьям.

            Апробация работы. Результаты исследований были представлены на: международной конференции ICSSPT (PTM'99) (Kyoto, 1999); Международной конференции «EUROMAT - 2000» (Tours, France); Всероссийской конференции «Дефекты структуры и прочность кристаллов» (Черноголовка, 2002); Международной конференции по мартенситным превращениям ICOMAT - 2002 (Helsinki, Finland) и ICOMAT - 2005 (Shanghai, China); международной конференции «CAD AMT' 2001» (Томск); Международной конференции ESOMAT - 2006 (Bochum/Germany); III, V, VI Международных конференциях «Фазовые превращения и прочность кристаллов (Черноголовка, 2004, 2008, 2010); «Бернштейновских чтениях» по термической обработке металлических материалов (Москва (МИСиС), 2009); XIII, XVI, XVIII, XVII Петербургских чтениях по проблемам прочности (Санкт-Петербург, 2002, 2006, 2007, 2008); I Евразийской научно-практической конференции «Прочность неоднородных структур» Москва - 2002; Всероссийской конференции молодых ученых «Математическое моделирование в естественных науках» (Пермь, 2000); V Межгосудаpственном семинаpе «Стpуктуpные основы модификации матеpиалов» (Обнинск, 1999); II Международной конференции «Микромеханизмы пластичности, разрушения и сопутствующих явлений» (Тамбов, 2000); Международном семинаре «Мезоструктура» (Санкт-Петербург, 2001); II, III, IV VI Международном семинаре «Актуальные проблемы прочности» (Старая Русса, 1998, 1999; 2003; В. Новгород, 2000); IV Молодежном семинаре по проблемам физики конденсированного состояния вещества (Екатеринбург, 2003); XXXV, XXXVI, XLIII, XLIV, XLVI, XLVII Международной конференции «Актуальные проблемы прочности» (Псков, 1999; Витебск, 2000; Витебск, 2004; Вологда, 2005; Витебск, 2007 г.; Нижний Новгород, 2008); XIV, XVI, XX, XIX Уральской школе металловедов - термистов «Актуальные проблемы физического металловедения сталей и сплавов» (Ижевск, 1998; Уфа, 2002; Екатеринбург, 2008; Пермь, 2010); IV, V, XI Международной школе - семинаре «Эволюция дефектных структур в конденсированных средах (Барнаул, 1998, 2000, 2010); XV Зимней школе по механике сплошных сред (Пермь, 2007); XVII Международной конференции «Физика прочности и пластичности материалов» (Самара, 2009); V Международной научной конференции «Прочность и разрушение материалов и конструкций» (Оренбург, 2008); Международном симпозиуме «Перспективные материалы и технологии» (Витебск, 2009); X Международной научно- технической Уральской школе-семинаре молодых ученых (Екатеринбург, 2009); Международном семинаре «Актуальные проблемы физики и механики мезоскопических систем» (Пермь, 2010).

            PDF - файлы двух монографий имеются в открытом доступе (с 13 января 2010 и с 7 октября 2010, соответственно) на сайте факультета наук о материалах МГУ.

            Публикации. Результаты исследования представлены в 27 статьях в рецензируемых журналах (входящих в список ВАК), в 3 статьях международного архива препринтов, в двух монографиях, в 3 статьях журнала, включенного в список РИНЦ, в 23 статьях в различных сборниках и 31 тезисе докладов конференций.

            Структура диссертации. Диссертация состоит из введения, восьми глав и заключения. Объем работы- 382 страницы, в том числе 69 рисунков, 28 таблиц, библиографический список содержит 308 источников.

            Похожие диссертации на Развитие динамических моделей управления ростом кристаллов при реконструктивных мартенситных превращениях