Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов Трунов, Семён Викторович

Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов
<
Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Трунов, Семён Викторович. Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов : диссертация ... кандидата физико-математических наук : 01.04.07 / Трунов Семён Викторович; [Место защиты: Кабард.-Балкар. гос. ун-т им. Х.М. Бербекова].- Нальчик, 2011.- 82 с.: ил. РГБ ОД, 61 11-1/966

Введение к работе

Актуальность темы диссертации

Повышенное внимание к проблеме исследований строения и физико-химических свойств наносистем, в том числе углеродных нанотрубок, как новый класс физических объектов нанометровых размеров, обладающих необычными физико-химическими свойствами. Исследование таких свойств углеродных наносистем (УНС), как строение и электронная структура, теплопроводность и электропроводность, межфазные взаимодействия и адгезия, электронная эмиссия и химическая активность, механические, капиллярные и сорбционные характеристики представляет фундаментальный интерес для разработки технологии получения наноматериалов. Уникальные физико-химические свойства УНС обеспечивают им обширную область применения в науке, технике и технологии. Так, материалы с использованием углеродных нанотрубок (УНТ) перспективны в качестве эффективного источника полевой электронной эмиссии для катодов и электроэнергетики, высокая тепловая и механическая прочность позволяют использовать эти материалы в условиях высоких температур и больших механических нагрузок; весьма перспективно использование УНТ в медицине в качестве сверхтонких иглы для инъекций и введения препаратов в живую клетку с наименьшим её повреждением и т.д..

Анализ литературных данных показывает, что углеродные наноструктуры (фуллерены, нанотрубки и др.) весьма чувствительны к методам и условиям их синтеза. С одной стороны, это затрудняет разработку способов получения наноструктур, позволяющих получить наноматериалы с удовлетворительно воспроизводимыми свойствами. Малейшее отклонение от технологии синтеза ведёт к заметному изменению свойств наноматериала, следовательно, к уменьшению выхода годной продукции на базе этого материала. С другой стороны, высокая чувствительность строения и свойств наноструктур к методу их синтеза будет способствовать разработке таких методов и технологий для получения наноматериалов с заданными параметрами их свойств. Отсюда следует, что для решения проблемы создания высокой технологии наноматериалов весьма актуальна и проблема разработки и создания диагностических и исследовательских методов и приборов, позволяю-

щих контролировать каждый этап технологического процесса производства наноматериалов, повлиять на формирование наночастиц требуемых строения и свойств. Здесь на первое место выдвигается возможность визуализации процессов зарождения и роста наноструктур. В данной работе приводится описание оригинального метода, с помощью которого впервые удалось визуально в режиме реального времени наблюдать за кинетикой зарождения и роста углеродных наноструктур в виде стержней и спиралей и изучить некоторые их свойства.

Цель работы. В данной работе ставилась цель создания экспериментальной установки и разработки методов визуализации процесса зарождения и роста углеродных наноструктур, а также высокоточного позиционирования нанозондов на их поверхности.

Ставились задачи:

  1. Разработать методики реальной визуализации процесса зарождения и роста наноструктур на базе оригинальной экспериментальной установки;

  2. Получить наноструктуры - углеродные нанотрубки в виде стержней и спирали в рабочей камере модернизированного электронного микроскопа и определить некоторые их характеристики;

  3. Отработать методику управляемого позиционирования на-нозонда в измерительной камере электронного микроскопа;

  4. Получить металлические нанокапли в условиях высокого вакуума и изучить смачивание ими металлической нити и поверхности твёрдого тела в зависимости от размера капли.

Научная новизна:

  1. Разработана методика визуализации процессов зарождения и роста наночастиц на созданной нами оригинальной экспериментальной установке на базе модернизированного электронного микроскопа.

  2. В рабочую камеру электронного микроскопа вмонтированы нано- и микроманипуляторы, позволяющие производить управляемое визуальное перемещение исследуемого образца и его изображения на люминесцентном экране по всем направлениям с точностью до 1,0 нм в пределах до 2x2 мкм.

  3. Разработан способ прецизионного позиционирования на-нозонда по поверхности образца. Способ продемонстрирован на примерах наблюдения за перемещением контакта острия кантиле-

вера (зонда) на поверхности материала и торца спирали углеродной нанотрубки.

4. Экспериментально показано, что в металлических системах капли малых размеров лучше смачивает тонкие микрометровые нити, а нанокапли плохо смачивает плоские поверхности.

Практическая значимость.

Разработанный метод позволяет визуально изучать способы получения углеродных нанотрубок, кинетику их зарождения и роста, производить селективный отбор полученных углеродных нанотрубок (УНТ), изучить некоторые их параметры, позволяющие выяснить возможные их применения в науке и на практике. На примере смачивания наноразмерной каплей тонкой нити и плоской поверхности твёрдого тела в металлических системах удалось наглядно показать влияние размера капли на угол смачивания и роль линейного натяжения в процессе взаимодействия нанокапли с поверхностью твёрдого тела. Разработанная методика и созданная экспериментальная установка по визуализации зарождения и роста наноструктур вошли в спецкурс «Межфазные явления в наноси-стемах» магистерской программы «физика конденсированного состояния вещества».

Основные положения, выносящиеся на защиту:

  1. Создана оригинальная экспериментальная установка и разработана методика визуализации процессов зарождения и роста наночастиц, позволяющая получать изображения нанообъектов с увеличением 105раз.

  2. В рабочей камере электронного микроскопа получены углеродные нанотрубки в виде стержней и спиралей высокой чистоты от примесей. Установлено, что однослойные высокочистые (от примесей) углеродные нанотрубки обладают высокой термостойкостью и металлической электропроводностью.

  3. Разработан прецизионный способ управляемого визуального позиционирования нанозонда (острия кантилевера) на поверхности исследуемого образца с точностью в несколько нанометров и в рабочем поле 2x2 мкм.

Личный вклад

Постановку задач, выбор методов их решения, обсуждения результатов проводили совместно с научным руководителем. Автор данной работы принимал участие в создании эксперименталь-

ной установки и отработке методики получения и селекции УНТ, самостоятельно реализовал способ управляемого позиционирования в системе нанозонд - исследуемый образец, осуществил регистрацию, обработку и систематизацию экспериментальных данных; проводил опыты по смачиванию тонкой нити нанокаплей.

Обоснованность и достоверность результатов

Результаты, представленные в диссертации, получены на основе проведенных экспериментов на современном научном оборудовании с использованием современных методов обработки экспериментальных данных. Проведён эксперимент по получению углеродных нанотрубок стандартным методом, полученные УНТ стандартным и предложенным методами идентичны по своим физико-химическим параметрам известным в литературе углеродным нанотрубкам.

Результаты исследований неоднократно обсуждались на семинарах и на специализированных конференциях по проблемам, связанных с тематикой диссертационной работы, опубликованы в международных и российских научных журналах и трудах конференций. Это позволяет считать полученные результаты обоснованными и достоверными, отвечающими современному уровню исследований. Большинство представленных результатов являются новыми и получены впервые.

Апробация работы

Результаты, представленные в диссертационной работе, опубликованы в 12 научных статьях и обсуждались на научных конференциях, симпозиумах и семинарах: Региональный научный семинар им. С.Н. Задумкина, г.Нальчик, КБГУ, 2001 -2010г.г.; XI Российская научная конференция по теплофизическим свойствам вещества, С.-Петербург, 4-7 октября, 2005г.; 11 Международный семинар «Теплофизические свойства веществ» (жидкие металлы и сплавы, наноструктуры), г. Нальчик, КБГУ, 25-30 сентября 2006г.; XII Российская научная конференция по теплофизическим свойствам вещества, Москва, ИМЕТ РАН, 7-Ю октября 2008г.; Первый международный симпозиум «Физика низкоразмерных систем и поверхностей» (LDS - 2008). Ростов-на-Дону, п. Лоо. 5-9 сентября 2008г.; Труды второго международного симпозиума «Плавление и кристаллизация металлов и оксидов», Ростов-на-Дону, п. Лро, 5-9 сентября 2009.

Публикации

По теме диссертации опубликовано 12 научных работ, в том числе статья в академическом журнале из списка ВАК России (список публикаций приведен в конце автореферата).

Структура и объем диссертационной работы

Похожие диссертации на Методы визуализации зарождения и роста углеродных наноструктур и позиционирования наноконтактов