Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Дьячкова Ирина Геннадьевна

Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами
<
Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Дьячкова Ирина Геннадьевна. Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами : Дис. ... канд. физ.-мат. наук : 01.04.07 : Москва, 2004 172 c. РГБ ОД, 61:04-1/500

Содержание к диссертации

Введение

Глава 1. Аналитический обзор литературы 11

1.1. Общие характеристики метода ионной имплантации 11

1.1.1 Теория пробегов и распределения ионов в твердых телах 11

1.1.2. Образование радиационных дефектов при ионной имплантации 15

1.1.3. Формирование профилей распределения радиационных дефектов

1.2. Влияние параметров имплантации протонов на микроструктуру, профиль распределения, механические и электрофизические свойства кремния

1.2.1. Влияние энергии протонов 27

1.2.2. Влияние дозы протонов 29

1.2.3. Влияние постимплантационного отжига 33

1.2.4. Влияние разной ориентации подложек 38

1.3. Применение имплантации протонов в технологии изготовления полупроводниковых приборов

1.4. Заключение по Главе 1 45

Глава 2. Методы исследования структуры нарушенных слоев 46

2.1. Метод рентгеновской дифрактометрии 47

2.1.1. Метод двухкристальной рентгеновской дифрактометрии 48

2.1.2. Метод трехкристальной рентгеновской дифрактометрии 51

2.1.2.1. Диффузное рассеяние рентгеновских лучей на микродефектах в монокристаллах

2.1.2.2. Профили интенсивности ТРД в случае монокристаллов с дефектами кулоновского типа

2.2. Метод рентгеновской топографии 64

2.3. Метод просвечивающей электронной микроскопии 66

2.4. Заключение по Главе 2 67

Глава 3. Объекты исследования и методики экспериментов и измерений 68

3.1. Кристаллы кремния, имплантированные с различными энергиями и дозами ионами водорода после имплантации и отжига

3.2. Методика облучения 69

3.3. Построение профилей распределения внедренного водорода и радиационных дефектов в кремнии по программе TRIM

3.4. Методика измерения профиля удельного сопротивления 72

3.5. Методика рентгеновских исследований 73

3.5.1. Идентификация нарушенного слоя с помощью метода рентгеновской топографии

3.5.2. Изучение структуры ионноимплантированных слоев методом рентгеновской дифрактометрии

3.5.3 Метод определения интегральных характеристик нарушенного слоя

3.5.4. Методика получения профилей деформации по кривым дифракционного отражения

3.5.5. Определение параметров микродефектов по результатам измерения интенсивности диффузного рассеяния рентгеновских лучей

3.6. Методика подготовки образцов для исследования методом просвечивающей электронной микроскопии

3.7. Заключение по Главе 3 89

Глава 4. Результаты комплексного исследования ионноимплантированных слоев и их обсуждение

4.1. Результаты исследования влияния облучения на структурные свойства кремния

4.1.1. Результаты исследования влияния дозы и температуры протонного облучения на интегральные характеристики нарушенного слоя

4.1.2. Результаты исследования влияния поля механических напряжений на формирование нарушенного слоя при имплантации ионов водорода в кремний

4.1.3. Результаты исследования влияния постимплантационной термической обработки на процесс дефектообразования

4.1.4. Результаты определения параметров и качественных изменений характера микродефектов в имплантированных протонами слоях кристаллов кремния

4.1.5. Анализ изменения характеристик микродефектов кристаллов кремния, облученных протонами при термической обработке

4.2. Результаты исследования возможности применения 146 имплантации протонов для коррекции характеристик рІп- фотодиодов

4.3. Заключение по Главе 4 158

Основные результаты и выводы по диссертации 160

Литература 163

Введение к работе

В последние десятилетия возможности традиционной металлургии полупроводников были существенно расширены за счет использования технологии ионной имплантации, которая позволяет вводить в материал практически любые примеси с концентрациями, не ограниченными пределом растворимости [1,2]. В настоящее время достаточно хорошо изучены основные закономерности процессов, протекающих при этом способе легирования, выявлены его достоинства и возможности использования, а сама ионная имплантация стала одним из базовых технологических процессов.

Долгое время практически единственным применением ионной имплантации, как в планарной, так и непланарной технологии являлось введение легирующих примесей в полупроводники при производстве дискретных приборов и интегральных схем [3]. В последние годы область применения ионной имплантации существенно расширилась.

Актуальность работы обусловлена быстро развивающимися направлениями практического использования ионной имплантации в современной технологии производства приборов микроэлектроники. В частности, для контролируемого введения радиационных нарушений с целью разделительной изоляции элементов интегральных схем, ускорения диффузии и стимуляции электрической активности внедренных примесных атомов, прецизионной корректировки и создания высокоомных резисторов, получения аморфизированных слоев, геттерирования нежелательных примесей, управления свойствами контакта металл-полупроводник и др. [4]. Но за стремлением получить оптимальные параметры ионноимплантированного материала, готового для производства на его основе прибора, остается в тени изучение процессов, происходящих в кристалле во время проведения в нее имплантации ионов, что тоже важно для микроэлектронных технологий. С отсутствием четкого представления о механизме структурных изменений в

приповерхностных пересыщенных дефектами слоях ионноимплантированных структур связано большинство технологических проблем.

Исследования, выполненные в последние годы, показали перспективность облучения кремния легкими ионами (водород, гелий) для формирования, так называемых "нарушенных" слоев и областей. Особенностью таких слоев является существование в них большого количества структурных дефектов, создаваемых имплантацией ионов водорода и последующей термообработкой. В зависимости от режимов имплантации, температуры и времени отжига возможно создание областей, насыщенных дефектами различного вида: кластерами и скоплениями точечных дефектов, микропорами, газовыми пузырями, заполненными водородом. Изучение природы и характеристик дефектов, возникающих при имплантации, позволит расширить возможности метода ионной имплантации в области создания новых технологий и управления характеристиками микроэлектронных устройств. Информация о структуре ионноимплантированных образцов позволит решить вопрос о подборе доз и энергий ионной имплантации, а также температуры отжига с целью оптимизации свойств нарушенного слоя для конкретного практического применения. Все это делает данную работу актуальной.

Целью данной работы являлось выявление основных закономерностей формирования дефектной структуры слоев кремния, имплантированных ионами водорода в различных условиях и ее эволюции при термической обработке, а также исследование возможности использования имплантации протонов для модификации свойств поверхностных слоев кремния с целью улучшения параметров и увеличения выхода годных электронных приборов.

Для достижения указанных целей необходимо было решить следующие основные задачи:

1). Установить зависимость характера дефектообразования от условий имплантации (энергии и дозы);

2). Выяснить роли внешних факторов (температура, поля механических напряжений) в формировании дефектной структуры в процессе имплантации;

3). Определить структурные и электрофизические характеристики слоев кремния, нарушенных имплантацией протонов и проследить их изменения в ходе последующей термической обработки;

4). Идентифицировать и определить характеристики микродефектов, возникающих в процессе имплантации ионов водорода и проследить их эволюцию в процессе термической обработки;

5). Выявить возможности использования свойств нарушенных слоев, созданных имплантацией протонов для управления характеристиками кремниевых электронных приборов.

Научная новизна полученных результатов заключается в следующем:

  1. Получены новые результаты об изменениях структурных и электрофизических свойств нарушенных слоев кристаллов кремния при облучении его протонами с энергиями в диапазоне от 100 до 500 кэВ, дозами от 1015 до 2-1016 смЛ

  2. Впервые выявлены особенности формирования нарушенных слоев ^ при воздействии внешних факторов: температуры и поля механических напряжений.

  3. Изучено изменение структурного состояния слоев кремния, имплантированного протонами при термической обработке в широком диапазоне температур (100 - 1100С).

  4. Впервые определены характеристики микродефектов, формирующих нарушенный слой, и исследованы их изменения при термической обработке.

  5. Предложена модель эволюции микродефектов в нарушенных имплантацией протонов (Е = 100-500 кэВ, D = 1015-2-1016 см*2) слоях кристаллов кремния при термической обработке в диапазоне температур Т = 200-1100С.

6. Показана эффективность использования нарушенных слоев кристаллов кремния, образованных при протонном облучении и отжиге, для коррекции характеристик кремниевых рІп-фотодиодов.

Практическая значимость результатов работы:

  1. Разработана методика проведения измерений и обработки экспериментальных данных для определения параметров нарушенных слоев методом рентгеновской дифрактометрии высокого разрешения.

  1. Отработана неразрушающая методика определения природы и характеристик микродефектов с разными знаками дилатации. Методика на основе анализа асимптотического диффузного рассеяния позволяет расширить спектр наблюдаемых микродефектов.

  2. Установленная роль внешних факторов ионной имплантации в процессе формирования дефектной структуры должна учитываться в технологии создания нарушенных слоев.

  3. Результаты определения характеристик микродефектов в кристаллах кремния, имплантированных протонами различных доз и энергий, подвергнутых термообработке в широком интервале температур, могут быть использованы для создания нарушенных слоев с оптимальными свойствами.

  4. Разработан метод защиты поверхности кремниевых pin-фото диодов, включающий облучение периферии p-n-переходов протонами и последующий отжиг. Определен оптимальный режим облучения и отжига для данного типа приборов, повышающий выход годных.

Основные положения, выносимые на защиту:

  1. Результаты определения интегральных характеристик нарушенного слоя кристаллов кремния, облученных протонами с энергией 150 кэВ и дозами от 2,5-Ю15 см"2 до 2-Ю16 см'2 в интервале температур от 50 до 610С.

  2. Результаты изучения воздействия внешних факторов ионной имплантации: дозы, температуры и поля механических напряжений, на процесс формирования дефектной структуры в кристаллах кремния.

  1. Результаты исследований структурных и электрофизических характеристик нарушенных слоев кремния, формируемых при облучении протонами сЕ = 200, 300, 100+200+300 кэВ, D = 2-Ю16 см"2 и последующей термической обработке в интервале температур от 100 до 900С.

  2. Экспериментально установленная немонотонная зависимость интегральных и электрофизических характеристик нарушенного слоя от температуры отжига.

  3. Модель эволюции радиационных микродефектов в имплантированных ионами водорода (Е= 100-500 кэВ, D= 10I5-2-I016 см"2) слоях кремния при термической обработке в интервале температур от 200 до 1100С.

  4. Результаты исследований механизма влияния структурных и электрофизических параметров поверхностных слоев кремния, модифицированных облучением протонами и последующим вакуумным отжигом, на В АХ ріп-ф ото диодов; режимы оптимальной протонной обработки диффузионных pin-фото диодов с глубиной залегания р-п-переходов - 3 мкм.

Апробация работы

Основные результаты, представленные в диссертации, докладывались и обсуждались на Научно-технической конференции студентов, аспирантов и молодых специалистов МГИЭМ (ТУ) (Москва, 1998 г.), IX Межнациональном совещании «Радиационная физика твердого тела» (Севастополь, 1999 г.), Второй Российской конференции по материаловедению и физико-химическим основам технологий получения легированных кристаллов кремния «Кремний -2000» (Москва, 2000 г.), X Межнациональном совещании «Радиационная физика твердого тела» (Севастополь, 2000 г.), Третьей Международной научно-технической конференции «Электроника и информатика — XXI век» (Зеленоград, 2000 г.), Третьей Международной конференции «Водородная обработка материалов» (ВОМ-2011) (Донецк - Мариуполь, 2001 г.), VI Межгосударственном семинаре «Структурные основы модификации

материалов методами нетрадиционных технологий» (MHT-VI) (Обнинск,

  1. г.), XI Межнациональном совещании «Радиационная физика твердого тела» (Севастополь, 2001 г.), 2-ой Межвузовской научной школе молодых специалистов «Концентрированные потоки энергии в космической технике, электронике, экологии и медицине» (Москва, 2001 г.), XII Международном совещании «Радиационная физика твердого тела» (Севастополь, 2002 г.), Совещании по росту кристаллов, пленок и дефектам структуры кремния «Кремний - 2002» (Новосибирск, 2002 г.), IV Международной научно-технической конференции «Электроника и информатика - 2002» (Зеленоград,

  2. г.), Третьей Российской конференции по материаловедению и физико-химическим основам технологий получения легированных кристаллов кремния и приборных структур на их основе «Кремний - 2003» (Москва, 2003 г.).

Работа отмечена Дипломом I степени, как лучшая научная работа, представленная на научно-техническую конференцию — конкурс студентов, аспирантов и молодых специалистов 1998 г. (МГИЭМ (ТУ)).

Публикации

По материалам диссертации опубликовано 18 печатных работ.

Структура и объем диссертации

Диссертация состоит из введения, четырех глав, основных результатов и выводов и списка использованной литературы. Работа изложена на 172 страницах машинописного текста, содержит 58 рисунков и 4 таблицы. Список литературы включает 101 наименование.

Теория пробегов и распределения ионов в твердых телах

Дефектообразование при имплантации ионов водорода и влияние дефектов на физико-химические параметры кремния являются серьезной проблемой при создании кристаллов с заданными свойствами. Микродефекты (МД), образовавшиеся в результате коагуляции точечных дефектов и создающие вокруг себя сильные поля упругих искажений, приводят к возникновению дополнительного изменения свойств кристалла и их существенной локальной неоднородности [5]. Интерес к исследованию МД определяется недостаточной изученностью, как самой природы МД, механизмов их образования, так и влияния их на физические свойства кристалла и, соответственно, на основные характеристики приборов на их основе.

С целью исследования МД, а также возможности применения имплантации ионов водорода в технологии изготовления полупроводниковых структур необходимо рассмотреть влияние параметров имплантации протонов на свойства кремния,

Метод ионной имплантации универсален и неспецифичен, позволяет вводить в любые мишени ионы различных элементов в строго контролируемых количествах, задавать распределения концентраций по глубине последовательностью ионных доз с различными энергиями; во многих случаях такие распределения просто невозможно получить иными методами [2].

Первичным процессом при ионной имплантации является проникновение ионов в вещество и их торможение до тепловых скоростей. Установившееся в результате этого распределение внедренных атомов по глубине называется профилем распределения, отличающееся от окончательного распределения примесных атомов, в которое часто вносят вклад диффузные процессы. Теория торможения ионов средних энергий в аморфных телах была разработана Линдхардом, Шаффом и Шиотом (теория ЛШШ) [3, 6]. Сущность теории ЛШШ кратко сводится к следующему. При бомбардировке твердых тел заряженными частицами определяющую роль играют неупругие соударения со связанными электронами тормозящего вещества (электронное торможение), в которых кинетическая энергия движущегося иона расходуется на электронные переходы в атомах, а также на возбуждение коллективных колебаний электронов и упругие соударения с ядрами (ядерное торможение), в которых энергия передается атомам как целым. Какой из этих эффектов будет преобладать, зависит от энергии и массы ускоренных частиц и массы и порядкового номера атома мишени.

Согласно теории ЛШШ распределение пробегов ионов оказывается гауссовым и характеризуется средним нормальным (проецированным) пробегом Rp и среднеквадратичным (стандартным) отклонением ARP (рис. 1.1.1). падающий ион поверхность мишени Рис. 1.1.1. Схематическое изображение полной длины пробега R, нормального пробега Rp и стандартного отклонения ARp. Результирующие траектории ионов представляют собой сложные кривые и имеют в аморфном веществе статистический характер. Общая траектория движения иона называется длиной пробега R. Если масса иона Ы\ много больше массы атома мишени М2, то отклонения малы и ион движется почти прямолинейно. Поэтому длина его пути вдоль траектории R слабо отличается от Rp. Если же Mi М2, а энергия иона Е не слишком велика, то траектория извилиста и Rp значительно меньше R. Вследствие статистического характера движения ионов величины Rp и R не имеют определенного значения, а колеблются около средних значений [6].

Следует отметить, что вклад ядерного торможения доминирует при малых энергиях имплантации, а электронного — при больших. При сложении кривых потери энергии за счет ядерного и электронного торможений суммарная величина потери энергии постоянна в очень широком диапазоне энергий падающих ионов. В результате этого полная длина пробега ионов R приблизительно пропорциональна первоначальной энергии падающего иона.

Простейшим профилем распределением ионов является нормальное, или гауссово, для построения которого требуется лишь два первых момента — проективный пробег Rp и стандартное отклонение ARP [8]. Гауссово распределение является удовлетворительным приближением к реальным распределениям примеси по пробегам или по глубине в тех случаях, когда эти пробеги являются достаточно симметричными. Однако это выполняется не всегда. Особенно заметны отступления от симметрии в случаях бомбардировки легкими ионами более тяжелых мишеней при условии преобладания электронных потерь.

Можно использовать различные виды асимметричных профилей распределения. Классическим методом построения распределения пробегов ионов является распределение Пирсона IV- распределение в приближении четырех параметров: Rp, ARP, асимметрии распределения и эксцесса р. Подробно этот метод рассмотрен в [8]. Для ряда значений асимметрии в [8] рассчитаны таблицы функций распределения Пирсона в безразмерных единицах. Таблицы позволяют для любых известных значений Rp, ARp и асимметрии легко построить профиль распределения внедренной примеси для широкого круга мишеней, ионов и их энергий.

Чтобы получить профиль концентрации N(x) примеси, распределение Пирсона нужно умножить на дозу: N(x) = N0-f{x). (1.1.3) Существует еще один метод получения распределения пробегов ионов, который называется методом Монте-Карло [9]. Идея метода состоит в том, что в ЭВМ моделируется некоторый элемент твердого тела, задаются законы, по которым происходит взаимодействие иона с атомами, а затем на такое смоделированное «твердое тело» в случайное место его поверхности выпускается ускоренный до определенной энергии «ион». Иными словами, проводится машинный эксперимент, при котором можно проследить весь путь иона, в том числе и место его остановки. После многократного повторения этой операции так, чтобы погрешности, связанные со среднестатистическими отклонениями, были малы, можно построить распределение ионов по глубине. Соответствие результатов таких машинных экспериментов реальным, определяется правильностью задания законов взаимодействия. Одновременно с исследованием пробегов ионов методом Монте-Карло можно получить такие сведения, как распределение числа первично смещенных атомов мишени по глубине (концентрацию дефектов). Во всех методах разделяют торможение на упругую и неупругую компоненты, не учитывая реальной обол очечной структуры атома, полностью вторичные процессы, используются некоторые другие упрощающие допущения [6]. В итоге ошибка при расчете средних значений Rp и ARP может достигать 20-25%.

Таким образом, профиль распределения имплантированных ионов в монокристаллах зависит от многочисленных факторов: направления ионного пучка, его расходимости, состояния поверхности, совершенства структуры кристалла, а также температуры мишени, поскольку она влияет на амплитуду тепловых колебаний и кинетику накопления радиационных дефектов.

Метод двухкристальной рентгеновской дифрактометрии

Метод основан на регистрации углового распределения дифрагированного пучка исследуемым образцом (то есть на измерении кривой дифракционного отражения), с дальнейшим анализом параметров полученной кривой [72, 74]. Наиболее информативным и удобным для исследования монокристаллов является метод записи кривых качания в геометрии Брэгга [73]. Наличие на поверхности кристалла слоя с различной степенью нарушения по разному влияет на параметры дифракционных кривых (процентное отражение, полуширина, интегральный коэффициент отражения, закон спадания «хвостов»). По величине отклонения этих параметров, при сравнении с теоретически рассчитанными для идеального образца, можно делать заключение о характеристиках нарушенного слоя, таких как среднее изменение параметра решетки, эффективная глубина нарушенного слоя и определять профили деформации.

Исследуемый образец, обычно, освещается пучком рентгеновских лучей, предварительно монохроматизированных отражением от кристалла монохроматора, который остается неподвижным, в то время как исследуемый кристалл осуществляет вращение вблизи угла дифракции [72]. Кривую, характеризующую зависимость интенсивности, отраженного кристаллом излучения от угла поворота, называют кривой качания, или кривой дифракционного отражения (КДО). Характеристиками совершенства структуры кристаллов являются следующие параметры кривой качания: интегральный коэффициент отражения R, который определяется как отношение всей интенсивности, отраженной исследуемым кристаллом, умноженной на угловую скорость, к интенсивности, отраженной кристаллом-монохроматором; полуширина кривой качания, т.е. полная ширина кривой на половине высоты, определяющая интервал углов поворота, в котором интенсивность уменьшается наполовину от максимума.

Дефекты в кристаллах могут влиять на указанные характеристики кривых качания за счет изменения кривой отражения исследуемого кристалла, т.е. коэффициент отражения R2 и форма кривой R(P) изменяются. Сравнение расчетных и экспериментальных кривых качания является основой для оценки совершенства структуры кристаллов.

Если исследуемый кристалл отражает по схеме Брэгга [73], то в обычном случае дислокации при плотности, большей 5 104 см 2, вызывают появление таких разориентировок, которые могут быть легко замечены по уширению кривой качания. Если уширение обусловлено только разориентировками, кривая качания является суммой отдельных кривых, сдвинутых друг относительно друга на угол разориентировки, так как при повороте кристалла разные участки последовательно попадают в отражающее положение. Такое уширение не зависит от брэгговского угла. При этом, так как полуширина кривой качания равна обычно нескольким секундам, если монохроматор и образец - совершенные кристаллы, то дополнительное уширение в одну или несколько секунд надежно фиксируется. Если уширение кривой качания вызвано наличием в отражающем объеме участков с различным значением межплоскостных расстояний dj,, то оно зависит от угла отражения: Д Ь = -( L)tg9. (2.1.4) При достаточно развитой субструктуре, когда дислокации сгруппированы в плоские сетки, кривые качания от отдельных субзерен могут разделяться, и общая кривая качания будет иметь несколько максимумов. Расстояние между ними равно разориентировке вокруг оси, параллельной оси вращения образца.

Если размер субзерен больше толщины слоя полупоглощения, тогда каждое субзерно отражает независимо от соседних и общая площадь кривой качания, состоящей из нескольких максимумов, будет как для совершенного кристалла. Если же их размер меньше толщины слоя полупоглощения, тогда субзерна, которые не экранируются лежащими над ними субзернами, уже вышедшими из отражающего положения полностью или частично, также могут давать существенный вклад в общую отраженную интенсивность. В результате существенно возрастает общий рассеивающий объем и угловой интервал отражения, что и приводит к сильному увеличению интегрального коэффициента отражения, который в пределе стремится к интегральному коэффициенту отражения, соответствующему кинематической теории.

Однако метод записи кривых дифракционного отражения в двухкри стальной схеме обладает существенным недостатком. Данный метод является интегральным, поскольку регистрируемая интенсивность собирается с широкой области обратного пространства вдоль сечения сферы Эвальда. При этом невозможно различить вклад в интенсивность кривой качания дифракционной (когерентной) и диффузной (некогерентной) компоненты рассеяния. При исследовании тонких слоев велик вклад диффузного рассеяния от структурных несовершенств нарушенного слоя (кластеры радиационных точечных дефектов, частично аморфизованные зоны и т.п.) в результирующую интенсивность. Это затрудняет однозначную трактовку получаемых результатов. Разделение этих эффектов требует подробного анализа распределения интенсивности окрестности узла обратной решетки, который может быть реализован на трехкристальном рентгеновском дифрактометре. 2.1.2. Метод трехкристальной рентгеновской дифрактометрии Возможности рентгенодифракцио иного метода в исследовании структуры тонких нарушенных слоев можно сильно расширить, если в дифракционную схему ввести третий кристалл-анализатор, как это показано на рисунке 2.1.1 [72].

Назначение этого кристалла - анализ углового распределения рентгеновских лучей, отраженных исследуемым кристаллом [76]. На совершенных кристаллах-анализаторах можно проводить такой анализ углового распределения с точностью до долей секунд. Получаемые трехкристальные кривые качания, отражают природу структурных изменений, прошедших в приповерхностных слоях кристалла, т.к. имеют высокую чувствительность к типу и характеристикам дефектов монокристаллов [77]. Тем самым, представляется возможность судить о типе дефектов уже на основании самого только вида профилей интенсивности, измеряемых методом ТРД. Более того, высокая разрешающая способность метода ТРД позволяет извлекать весьма точную количественную информацию о характеристиках дефектов [78].

Отличие метода ТРД от обычных трехкристальных схем, в которых первые два совершенных кристалла служат для коллимации и монохроматизации излучения, падающего на третий кристалл-образец, заключается в том, что исследуемый образец выступает в качестве второго кристалла, а третий (совершенный) кристалл-анализатор осуществляет развертку углового распределения излучения, дифрагированного вторым кристаллом (рис. 2.1.1). Кристалл-образец отклоняют от точного условия Брэгга на угол а, а кристалл-анализатор вращают в некотором угловом диапазоне вблизи точного угла Брэгга. Регистрируемая детектором интенсивность рентгеновских лучей во время вращения третьего кристалла представляет собой спектр ТРД. При данной схеме записи, спектр обычно состоит из трех пиков, которые согласно сложившейся терминологии называют главным, псевдо и диффузным пиками. Угловые положения пиков определяются законами вращения кристаллов и геометрии дифракции.

Построение профилей распределения внедренного водорода и радиационных дефектов в кремнии по программе TRIM

Процессы дефектообразования при ионной имплантации зависят от многих факторов: температура мишени, доза и энергия имплантируемых ионов, их химическая активность, соотношение масс иона и атомов мишени, ориентации подложки. Не всегда есть возможность учесть влияние всех этих факторов. Программа TRIM (Transport of Ions in Matter) позволяет произвести приблизительные оценки первичных процессов ионной имплантации и дает возможность наглядно представить, как будет происходить проникновение иона в мишень и каковы будут последствия [96].

Расчеты профилей распределения ионов водорода и радиационных дефектов по глубине, производимые по программе TRIM, основываются на методе Монте-Карло [6, 9]. Сущность и точность данного метода описаны в Гл. 1, п. 1.1.1, 1.1.3. Программа TRIM учитывает только влияние энергии на профиль распределения ионов примеси, независимо от количества вводимых ионов. Поэтому, для набора необходимой статистики при расчете профиля распределения выбирается произвольное число вводимых ионов. В данной работе, для обеспечения удовлетворительной точности расчета, число ионов было принято равным 10000. Разброс значений среднего пробега, обусловленный статистическими флуктуациями присущими методу Монте-Карло при расчете для 10000 ионов по программе TRIM, составляет 1 нм. Это количество ионов приравнивалось дозе имплантации, которая задается как входной параметр программы. Средний порог дефектообразования Ej для кремния составляет величину 20 эВ [42]. Толщина слоя мишени, в котором проводится расчет профиля распределения, принималась равной от 2 до 7 мкм, в зависимости от энергии вводимых ионов. Через каждые 2000 частиц количество ионов примеси, попавшее в слой пересчитывается в концентрацию ионов в этом слое (см 3). Далее рассчитываются доли кремния и атомов примеси по отношению ко всем частицам в данном слое. При следующем цикле моделируются столкновения с учетом вероятности взаимодействия атомов примеси и матрицы.

После чтения входных данных и расчета необходимых параметров программа переходит к циклу налетающей частицы, в ходе которого рассматриваются столкновения и определяются новые направления движения: рассчитываются потери энергии при столкновениях, затем рассматривается возможность образования первично выбитых атомов (ПВА). Учитывается изменение траектории иона за счет упругого взаимодействия с атомом и потеря энергии ионом за счет неупругого взаимодействия с электронами атома мишени. Процесс повторяется пока энергия иона составляет более 0,001 от первоначальной. Если образуется ПВА, то его данные записываются в список 1. Если движение налетающей частицы прекращается, то программа переходит от цикла налетающей частицы к каскадному циклу. Структура каскадного цикла подобна структуре цикла налетающей частицы. Информация по ПВА переносится в список 2, а информация по новым вторично выбитым атомам записывается в список 1. После того как программа закончит работу с атомами из списка 2, список 1 объединяется с уменьшившимся списком 2. Эта процедура повторяется до тех пор, пока список 2 не будет исчерпан. Затем в зависимости от количества введенных ионов программа переходит или к циклу налетающей частицы, или выводит результаты расчета.

В результате расчетов, произведенных по программе TRIM, были получены зависимости концентрации ионов водорода и радиационных дефектов от глубины имплантированного слоя при различных энергиях имплантации в диапазоне 100-500 кэВ и комбинированном облучении. В программе считается, что в процессе имплантации образуется одинаковое количество вакансий и междоузельных атомов (см. Гл.], п. 1.1.3), поэтому результирующие профили выдаются относительно одного из видов точечных дефектов. 3.4. Методика измерения профиля удельного сопротивления

Срез выполняется под определенным углом при помощи шлифования алмазной пастой с размером зерна не более 1 мкм. Образец с нанесенным срезом крепится в каретке автоматической однозондовой установки, обеспечивающей прерывистую подачу образца с шагом, соответствующим перемещению по глубине 1 мкм. Через образец, имеющий низкоомные невыпрямляющие токовые контакты, пропускают постоянный ток. На поверхность образца с косым шлифом помещают зонд, в качестве которого использовалась вольфрамовая игла с острием, имеющим радиус скруглення около 1 мкм. При измерениях на резистор, включенный в цепь зонда, подается положительный потенциал. Измеряемой величиной является потенциал зонда, который меняется в зависимости от расположения точки касания зонда относительно края косого среза. Для измерения потенциала зонда использовался электрометрический усилитель постоянного тока с входным сопротивлением 10ш Ом.

Результаты исследования влияния дозы и температуры протонного облучения на интегральные характеристики нарушенного слоя

Для выявления влияния дозы и температуры протонного облучения на характеристики нарушенного слоя были исследованы кристаллы кремния, толщиной 0,4 мм, с ориентацией поверхности (100), подвергнутые имплантации ионов водорода с энергией 150 кэВ и дозами 2,5-1015 см"2, 5-Ю15 см 2, 1-Ю16 см"2, 2 10 см . Температуры образцов при облучения составляли 50С, 140С, 230С, 320С, 430С, 550С, 610С. Исследования проводились с использованием двухкри стального рентгеновского дифрактометра в бездисперсионной схеме (рис. 3.5.2). В результате рентгенодифракционного эксперимента для всех указанных режимов облучения были получены кривые дифракционного отражения (КДО), представленные на рис. 4.1.1 - 4.1.3. По экспериментальным КДО, используя методику, описанную в п. 3.5.3 были получены количественные параметры ионноимплактированных слоев: средняя эффективная толщина и средняя относительная деформация.

Для всех доз имплантации водорода в кремний характер снятых кривых дифракционного отражения изменился по отношению к идеальной кривой (рис, 4.1.1 — 4.1.3), Как видно, основное отличие этих кривых от кривой, соответствующей отражению от необлученного кристалла (рис. 4.1.1) заключается в появлении (помимо основного максимума) дополнительной осцилляции интенсивности, характеризующей образование нарушенного слоя (рис. 4.1.2, 4.1.3). Во всех случаях кривые ассиметричны, причем со стороны углов меньших брэгговского интенсивность больше, чем с противоположной стороны. Для всех указанных доз при температурах от 50 до 550С со стороны малых углов хорошо видны когерентные осцилляции, характеризующие деформацию положительного знака, и явно выражен пик от нарушенного слоя (рис. 4.1.2 а, б, рис. 4.1.3, крива б). Видно также, что дополнительная интенсивность увеличивается с увеличением дозы от 2,5 1015 до 2 1016 см 2.

По методике, описанной в п. 3.5.3, была составлена программа вычисления интегральных характеристик нарушенного слоя ЬЭфф и Да/а непосредственно из экспериментальных КДО для программного пакета MATLAB. Результаты расчета интегральных характеристик для всех образцов приведены на зависимостях ЬЭфф(Т), Да/а(Т), ЬЭфф(Б), Aa/a(D) (рис. 4.1.4, 4.1.5).

Анализируя температурную зависимость ЬЭфф и Да/а (рис. 4.1.4 а, б) видно, что эффективная толщина и относительная деформация нарушенного слоя возрастают, достигая максимального значения при температуре 430С. Причем, при дозе облучения 2 10 см" величина Ьэфф увеличивается в 2,7 раза с ростом температуры облучения, тогда как при меньших дозах она возрастает почти в 4 раза. Относительная деформация увеличивается в среднем в 1,3 раза при росте температуры протонного облучения от 50С до 430С. С дальнейшим ростом температуры значения І фф и Да/а резко убывают.

Очевидно, что формирование нарушенного слоя в кристалле обуславливается течением двух конкурирующих процессов эволюции первичных радиационных дефектов. После выбивания атомов кремния из положения равновесия и образования междоузельных атомов и вакансий может иметь место их рекомбинации, и в этом случае дефекты исчезают. В другом случае за счет диффузионных процессов первичные междоузельные атомы и вакансии могут удаляться друг от друга и образовывать стабильные радиационные дефекты в виде пар, кластеров и т.д.

Анализ дозовой зависимости ЬЭфф и Да/а показывает рост значений этих величин с дозой, причем наибольшие изменения эффективной толщины и относительной деформации нарушенного слоя от дозы происходит при температурах до 140С (самый крутой наклон кривой, рис. 4.1.5 а, б), в 1,8 и 1,3 раза, соответственно.

В кремнии, облученном протонами в диапазоне температур 300 - 450С образуются, согласно [14, 24], мелкие водородсодержащие доноры. Во время такой высокотемпературной имплантации в кремнии происходит распад пересыщенного раствора имплантированного водорода и взаимодействие его с радиационными дефектами и примесными атомами. Это взаимодействие приводит к образованию электрически активных дефектов, проявляющих свойства мелких донорных центров. Структура и параметры этих центров зависят от концентрации водорода.

При температурах выше 450С происходит диссоциация водородных комплексов с одновременным высвобождением атомов водорода. В результате последующей диффузии и десорбции с поверхности, водород выделяется из образца. Это является причиной резкого падения интегральных характеристик нарушенного слоя при температурах имплантации выше 430СС.

Таким образом, результаты, проведенного рентген од ифракционного эксперимента в двухкристальной схеме хорошо согласуются с имеющимися литературными данными о водородсодержащих дефектах при высокотемпературной имплантации.

Похожие диссертации на Формирование нарушенных слоев в кристаллах кремния, имплантированных протонами