Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Гаджиева Аида Меджидовна

Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений
<
Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Гаджиева Аида Меджидовна. Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений : Дис. ... канд. хим. наук : 02.00.04 : Махачкала, 2004 100 c. РГБ ОД, 61:04-2/561

Содержание к диссертации

Введение

ГЛАВА I. Литературный обзор

1.1. Методы получения и утилизации хлористого кальция 7

1.1.1 Химические методы 7

1.1.2. Электрохимические методы 10

1.2. Получение сахаратов кальция и использование их в качестве ингибиторов коррозии 12

1.3 .Электрохимический синтез газообразного хлора 13

1.4. Синтез диоксида углерода 16

1.5. Закономерности протекания электрохимических процессов в природных водах, содержащих ионы кальция 17

1.5Л. Электролиз термальных вод 17

1.5.2. Электролиз морской воды 20

1.6. Выводы из литературного обзора 23

ГЛАВА II. Методика эксперимента 24

2.1. Поляризационные измерения 24

2.2- Электрохимические синтезы 25

2.3. Методика анализа и идентификации продуктов 26

2.4. Математическая обработка полученных результатов 33

Глава III. Экспериментальные данные и их обсуждение

3.1. Закономерности протекания электродных реакций в растворе хлорида кальция на различных электродных материалах 39

3.1.1. Анодный процесс - кинетика и механизм образования газообразного хлора при электролизе раствора хлорида кальция 39

3.1.2. Катодный процесс - кинетика образования газаообраз-ного водорода при электролизе раствора хлорида кальция 45

3.1.3. Препаративные аспекты электролиза водного раствора хлорида кальция 48

3.2. Особенности протекания электродных реакций в водных растворах (САС12+САХАРОЗА) на различных электродных материалах 50

3.2.1. Катодный процесс 50

3.2.2. Препаративные аспекты электрохимического получения сахарата кальция 58

3.2.3. Закономерности протекания электродных реакции в системе: (СаС12+сахароза+Са(ОН)2) 61

3.2.3.1 Анодный процесс 61

3.2.3.2 Катодный процесс 62

3.3. Закономерности протекания электродных реакций в системе [СаС12+НШз+Са(Шз)2] 65

3.3.1. Анодный процесс 65

3.3.2. Катодный процесс. 68

3.3.3. Препаративные аспекты электрохимического синтеза нитрата кальция 74

3.3.4. Препаративные аспекты электрохимического получения диоксида углерода 75

3.4 Электрохимическое получение ацетата кальция 78

3.4.1. Особенности катодного процесса при электросинтезе ацетата кальция на различных электродных материалах 79

3.4.2. Препаративные аспекты электросинтеза ацетата кальция 87

Выводы 89

Литература

Введение к работе

Актуальность темы. Практически во всех природных водах содержатся соединения кальция в тех или иных концентрациях. Большие количества хлористого кальция образуются в виде отходов при получении соды, гидролизе хлорсодержащих органических соединений и в других производственных процессах.

Известные химические и электрохимические методы переработки хлорида кальция обладают существенными недостатгами: разложение хлорида

кальция при температуре 950-1000 С требует использования специальных конструкционных материалов и больших энергетических затрат, при электролизе же растворов хлорида кальция на катоде отлагается нерастворимый осадок (тСа(ОН)2 * иСаСІ2) и со временем прохождение электрического тока через систему прекращается.

Переработка хлорида кальция в более ценные продукты, используя его в качестве нового вида сырья для получения соляной кислоты, хлора, хлор-сульфоновых кислот и хлористого алюминия в органическом и фармацевтическом производстве, является актуальной проблемой.

Особенно перспективными для этих целей являются электрохимические методы, позволяющие проводить синтезы химических продуктов без применения реактивов, используя электроокислительные и электровосстановительные процессы.

Выбор объектов исследования в диссертационной работе определялся, с одной стороны, ценностью конечных продуктов, а с другой стороны, возможностью использования в качестве сырья - хлорида кальция - многотоннажного отхода промышленных производств, переработка которого способствует охране окружающей среды от вредных промышленных выбросов.

Цель и задачи исследования. Целью работы явилось изучение законо
мерностей протекания электродных реакций и получение кальцийсодержа-
лі щих соединений из водных растворов хлорида кальция.

Достижение поставленной цели потребовало решения следующих задач:

изучить анодную реакцию выделения хлора из водных растворов хлорида кальция на различных электродных материалах;

установить кинетику и механизм протекания электродных реакций в водных растворах хлорида кальция, нитрата кальция, ацетата кальция и смеси хлорида кальция с сахарозой;

- определить оптимальные параметры электрохимического синтеза каль-
Ф цййсодержащих соединений: плотности тока, концентрации электролитов,

выходы целевых продуктов по току.

Объектами исследования явились электрохимические процессы, проте
кающие на различных электродных материалах в водных растворах хлорида
кальция с разными добавками. Выбор объекта исследования определялся, с
одной стороны, неизученностью и сложностью электродных процессов в рас
сматриваемых системах, а с другой - возможностью использования отхода
Ш многотоннажного производства хлорида кальция для получения ценных

продуктов.

Научная новизна:

-создана научная основа технологии и прогрессивные технологические решения электролиза водных растворов, содержащих ионы кальция;

- изучены закономерности протекания анодных и катодных реакций по
лучения кальцийсодержащих соединений на различных электродных мате-

^ риалах.

Практическое значение работы:

-впервые, используя в качестве сырья хлорид кальция, синтезированы такие ценные химические соединения, как ацетат кальция, сахарат кальция, нитрат кальция, диоксид углерода, газообразные хлор и водород.

Апробация работы. Основные результаты докладывались и обсуждались на XIV совещании по электрохимии органических соединений "Новости электрохимии органических соединений" (г. Новочеркасск, 1998), на Всероссийской научно-практической конференции "Химия в технологии и медицине" (г. Махачкала, 2002), на Международной научно-технической конференции, посвященной 70-летию Санкт-Петербургского государственного университета низкотемпературных и пищевых технологий (Санкт-Петербург, 2001), Международной конференции "Современные проблемы органической химии, экологии и биотехнологии" (г. Луга, 2001), на итоговых Всероссийских конференциях "Экология и рациональное природопользование" (Санкт-Петербург, 2001 и 2002).

Публикации. По теме диссертации опубликовано 11 работ в виде статей и тезисов докладов.

Объем и структура диссертации. Диссертационная работа состоит из введения, трех глав, выводов и списка литературы, включающего 111 наименований. Работа изложена на 100 страницах машинописного текста, включает 36 рисунков и 6 таблиц.

Работа выполнена в рамках гранта Министерства образования РФ по программе "Научные исследования высшей школы по приоритетным направлениям науки и техники", подпрограммы - "Экология и рациональное природопользование", раздела - "Проблемы техногенных образований и использование промышленных и бытовых отходов 2001-2002 гг.".

Получение сахаратов кальция и использование их в качестве ингибиторов коррозии

В значительных количествах хлор используется для приготовления отбеливателей (гипохлорита кальция и хлорной извести). Сжиганием хлора в атмосфере водорода получают чистый хлористый водород. Соответствующие хлориды используются в производстве титана, ниобия и кремния. Промышленное применение находят также хлориды фосфора железа и алюминия.

Свыше 60 % всего производимого хлора используется для синтеза хло-рорганических соединений. К крупным потребителям хлора относятся производства четыреххлористого углерода, хлороформа, хлористого метилена, дихлорэтана, хлористого винила, хлорбензола. Значительные количества хлора расходуются при синтезе глицерина и этиленгликоля хлорными методами, а также при синтезе сероуглерода [32, 33].

Для обеззараживания воды более перспективен диоксид хлора, получаемый в процессе электролиза раствора хлорида натрия [34].

По предварительным оценкам производство хлора в 1987 г. в США составило 10,4 млн. тонн. Стоимость 1 т. хлора 195 $ [35].Получают хлор электролизом раствора NaCl. Теоретические основы и конструкции промышленных электролизеров описаны в монографии [36].

Освоение технологии электролиза рассолов NaCl с использованием ионообменных мембран позволяет снизить (по сравнению с диафрагменным или ртутным электролизом) стоимость оборудования (на 15-25 %) и затраты энергии (на 20-35 %). Экономичность мембранного электролиза связывается с возможностью получения щелочи с концентрацией 40 % при потреблении электроэнергии 200 кВтч/т продукта. Двухслойные мембраны допускают работу при плотности тока до 4 кА/м , что обеспечивает более эффективное использование дешевой электроэнергии в ночное время. Указанные преимущества полностью компенсируют относительно высокую стоимость новых мембран (500-700 $/м2) [37].

Обсуждается эффективность использования активированных катодов, позволяющих снизить перенапряжение выделения водорода. Дальнейшее снижение напряжения на электролизере может быть достигнуто увеличением рабочего давления до 5 бар при одновременном повышении температуры. Использование кислорода (воздух), деполяризующего катод, заменяя процесс выделения водорода процессом восстановления кислорода, снижает затраты электроэнергии до 1600 кВт-ч/т щелочи (если не учитывать теряемую энергоемкость водорода). Альтернативным путем является электроокисление водорода в топливном элементе [38, 39, 40].

Описаны опыты фирмы Хехст с хлорным мембранным электролизером с площадью мембраны 0,1 м2. Найдено, что выход по току, понижающийся с ростом концентрации щелочи, достигает минимума при концентрации 30 % и затем возрастает до концентрации 34 %, после чего снова падает. Рассмотрены различные механизмы осуществления мембранного процесса и выбора свойств мембран, причины их старения. Показано, что только при низкой стоимости пара стоимость затрат на энергию при мембранном электролизе может приблизиться к таковой при ртутном методе [41].

В работе [42] проведено систематическое исследование процесса электролиза растворов хлоридов щелочных и щелочно-земельных металлов без диафрагмы. Показано, что различия протекания анодного процесса в зависимости от природы катиона исходного электролита, обусловлены разной растворимостью продуктов электролиза, главным образом растворимостью гидроксидов соответствующих металлов.

В хлоридном мембранном электролизере хотя бы с одной стороны мембраны имеется пористый газо- и жидкостнопроницаемый слой, не имеющий электродной активности. В катодной и анодной камерах поддерживают давление предпочтительно до 15 кгс/см2, что позволяет снизить напряжение электролиза. Метод может быть применен для электролиза воды и соляной кислоты [43].

В работе [44] рассматривается модель процесса получения газообразного хлора в непроточном электролизере.

Электролиз термальных вод

В последнее время для очистки и особенно обезвреживания воды применяется гипохлорит натрия или кальция [61, 62]. Повышенный интерес к гипохлориту связан в значительной степени с большими возможностями его использования. Применение гипохлорита, полученного электролизом морской воды для обработки сточных вод, экологически целесообразно [63, 64].

Электрохимический способ получения растворов гипохлорита электролизом водных растворов поваренной соли или природных вод позволяет организовать это производство непосредственно на местах потребления растворов, при этом отпадает необходимость длительного хранения растворов гипохлорита [65].

В настоящее время нашли применение два способа электрохимического получения дезинфектанта: электролизом концентрированных растворов хлорида натрия с последующим смешиванием с обрабатываемой водой и прямой электролиз обеззараживаемой воды. Процесс электролиза как в одном, так и в другом случае зависит от плотности тока на электродах, концентрации хлорида натрия, рН, температуры и характера движения электролита, материала электродов и их пассивации, а также способа токоподвода к электродам [65].

Исследован процесс электрохимического синтеза гипохлорита натрия в мембранном электролизере с электродом из ОРТА и неорганической керамической мембраной на основе 2x0г. Изучено влияние плотности тока, концентрации раствора хлорида натрия, скорости подачи раствора хлорида натрия, скорости подачи растворов в электродные камеры. Показано, что в оптимальных условиях выход по току гипохлорита натрия составляет 77% при удельном расходе электроэнергии 2,4 кВт-ч/кг и хлорида натрия 3,1 кг/кг. Определена коррозионная способность анода в условиях проведения эксперимента [67].

Предложен способ и устройство для контроля хлорсодержащих соединений при водоподготовке, предназначенный, главным образом, для обеззараживания воды в плавательных бассейнах. Генерирование обеззараживающего раствора гипохлорита натрия производится электролитическим методом, при этом предполагается, что вода в бассейне содержит достаточное количество хлоридов. Вода циркулирует в замкнутом контуре, во внешней части которого находится электролизер, а также фильтр для очистки воды [68].

Авторы патента [69] предлагают для обеззараживания питьевой воды встраивать в боковую поверхность трубопровода миниэлектролизер, в котором электрохимическим путем производится гипохлорит из разбавленного хлоридсодержащего раствора.

Исследованы особенности электролиза разбавленного (0,89 %) раствора хлористого натрия в условиях протока. Установлено, что повышение скорости протока приводит к резкому снижению выхода хлората и позволяет существенно повысить производительность и стабильность работы электролизера. Лучшие результаты получены в электролизере с титановыми электродами, имеющими дисперсное платиновое покрытые с фактором шероховатости не менее 200, при периодической катодной активации анодов [70].

Изучен электрохимический процесс синтеза гипохлорита натрия под давлением. Электролиз проводится в автоклаве из титанового сплава, армированный внутри фторопластом при перемешивании. Образующийся при катодной реакции газообразный водород накапливается в системе, повышая её давление. Исследования проводили под давлением 100-150 атм. В связи с тем, что раствор находится под высоким давлением растворимость хлора увеличивается, что приводит к более повышенным выходам по току гипо хлорита натрия. В качестве катодных материалов использованы двуокись рутения на титановой основе, графит и платина, а катодом служил титан [71].

Сообщается [72] об использовании гипохлорита натрия, полученного электролизом природных вод, для очистки воды Махачкала-Тернаирского месторождения от фенола.

Морская вода имеет высокую минерализацию. Минерализация морской воды в общем составляет 3,5 % или 35 000 млн"1. Из них лишь два компонента (хлориды и натрий) присутствуют в количестве более 1 %, концентрация же двух других: сульфата и магния, составляет около ОД %; кальций, калий, бикарбонат и бром, составляют около 0,001 %. Остальные элементы присутствуют в очень низких концентрациях.

По соотношению отдельных солей к их сумме, соленость вод Каспийского моря отличается от океанической и Черного моря. Воды Каспийского моря относительно бедны, по сравнению с океаническими, ионами Na и СГ и богаты ионами Са и SO4 ". Средняя соленость вод Каспийского моря составляет 12,8-12,85 %, при колебаниях от 3 % в устьевой части Волги до 20 % в Балханском заливе. Зимой соленость вод Северного Кавказа высока, что объясняется льдообразованием, и слабым притоком волжских вод [73].

В последние годы происходит увеличение поступления солей в море, что связано с повышением ионного стока рек [74, 75].

Наибольшее количество взвешенных частиц, присутствующих в морских водах, содержат те же минералы, что и окружающие породы ( каолинит, тальк, кварц, полевой шпат и др.). В таблице 1.1. представлен основной состав воды Каспийского моря.

Электрохимические синтезы

Анализ хлорсодержащих соединений проводили по следующим методикам: Определение СЮ методом Понттиуса. 10 мл электролита (рН = 8) с добавлением небольшого количества крахмала оттитровывали ОД Н раствором йодида калия [83]. Определение СГ . 1 мл электролита довести дистиллированной водой до 100 мл. 10 мл пробы оттитровать 0,1 Н раствором нитрата серебра в присутствии нескольких капель СНзСООН + К2СЮ4.

Определение C1CV. К 10 мл пробы прилить 25 мл соли Мора. Прогреть до появления пузырьков и резко охладить. Добавить 5 мл смеси Рейнгарта и оттитровать 0,1 Н раствором перманганата калия до появления розового окрашивания [84].

Определение СЮ/. К 10 мл электролита прилить 10 мл насыщенного раствора хлорида калия. Если осадок не выпадает, то СЮ/ в системе отсутствуют. Определение количества выделившегося хлора Образующийся при электролизе газообразный хлор пропускают через раствор йодистого калия и выделившийся йод оттитровывают тиосульфатом натрия определенной концентрации [85]. Хлор определяют йодометрическим титриметрическим методом.

Реактивы: тиосульфат натрия - 0,005 н раствор; KI — 10%-нцй раствор; ацетатная буферная смесь. Готовят, смешивая равные объемы 1 н растворов CH3COONa и СНзСООН; свежеприготовленный раствор крахмала - 1%-ный раствор.

Ход определения. В коническую колбу емкостью 250 мл отмерить пипеткой 100 мл водопроводной воды, прибавить 5 мл 10%-ного раствора KI, 5 мл ацетатной буферной смеси и 1 мл раствора крахмала. Оттитровать пробу 0,005 н раствором тиосульфата натрия до исчезновения синей окраски раствора.

Для определения содержания кальция в водах применяют трилономет-рический метод, позволяющий определить от 0,1 мг и выше Са в пробе. Этот метод основан на применении трилона Б в присутствии индикатора му-рексида. Сущность метода заключается в том, что ионы Са2+ в щелочной среде образуют комплексное соединение с мурексидом, которое разрушается при титровании с трилоном Б в результате образования более устойчивого комплексоната натрия. Мурексид (аммонийная соль пурпуровой кислоты при рН 12 взаимодействует с ионами Са , образуя соединения розового цвета [86].

Мурексид не дает реакции с ионами Mg , но если последнего в исследуемой воде свыше 30 мг/л, выпадет осадок Mg(OH)2 адсорбируя на своей поверхности индикатор, что затрудняет фиксирование точки эквивалентности. Тогда следует разбавить исследуемый раствор в 5-6 раз, чтобы уменьшить концентрацию магния.

Реактивы: трилон Б - 0,05 н раствор. Точную нормальность устанавливают по стандартному 0,05 н раствору MgS04 или приготовленному из фик-санала; NaOH - 10%-ный раствор; мурексид - сухая смесь (1 часть мурекси-да и 99 частей NaCl).

Ход анализа. В коническую колбу емкостью 250 мл отмерить пипеткой 100 мл исследуемой воды, прилить 5 мл 10%-ного раствора едкого натра, внести немного сухой смеси индикатора. Раствор при этом окрашивается в красный цвет. Пробу титруют трилоном Б при энергичном перемешивании до появления лиловой окраски, устойчивой в течение 3-5 минут. При дальнейшем прибавлении трилона Б окраска не меняется. В качестве "свидетеля" можно использовать перетитрованную пробу, но следует помнить, что оттитрованная проба сохраняет устойчивую окраску сравнительно недолго. Поэтому необходимо приготовить новый "свидетель", если наблюдается изменение окраски ранее приготовленного.

Катодный процесс - кинетика образования газаообраз-ного водорода при электролизе раствора хлорида кальция

Учитывая, что платина является дорогостоящим электродным материалом, процесс выделения хлора исследован на более дешевом материале -графите. Нарис. 3.3 представлены анодные вольтамперные кривые на графите в водных растворах хлорида кальция при его концентрации 0,1 - 2,0 М. Как и в случае с платиновым электродом, при повышении концентрации хлорида кальция приводит к смещению потенциала выделения хлора в анодную сторону в среднем на 250 - 300 мВ.

Из представленных выше вольтамперных кривых выделения хлора на электродных материалах из платины, графита и ОРТА следует, что с ростом концентрации хлорида кальция облегчается процесс выделения молекулярного хлора вследствие уменьшения диффузионной составляющей процесса.

Для сравнения кинетических параметров выделения хлора на рис. 3.4 представлены соответствующие тафелевские зависимости перенапряжения (п) от логарифма плотности тока (lg і) на платиновом, графитовом электродах и ОРТА.

Соответствующие им уравнения прямых, после расчетов коэффициентов а и Ь, можно представить в следующем виде: По рассчитанным коэффициентам а и b были найдены характеристики процесса - ток обмена i0 и коэффициент переноса а

Параметры электрохимического выделения хлора из 2М раствора хлорида кальция приведены ниже:

На рис. 3.5. для сравнительного анализа приведены анодные вольтам-перные кривые на платине, графите и ОРТА в 2М растворе хлорида кальция. Как видно из рисунка, хлор из раствора хлорида кальция выделяется при самых низких потенциалах на аноде из ОРТА, а вольтамперная кривая на графите на 250 - 300 мВ смещена по отношению к кривой на ОРТА в анодную сторону. Поэтому очевидно, что в качестве анодного материала при электролизе водных растворов хлорида кальция предпочтительнее использовать ОРТА. На графите энергозатраты будут выше, и по стойкости последний уступает ОРТА, особенно при высоких анодных нагрузках.

Учитывая, что энергетические затраты при электролизе зависят и от кинетики протекания катодного процесса, нами были изучены закономерности выделения водорода из водных растворов хлорида кальция на различных электродных материалах.

На рис. 3.6. приведены вольтамперные кривые катодного выделения водорода из растворов хлорида кальция с концентрацией 0,5 - 2,0 М на платиновом электроде. Анализ вольтамперных кривых показывает, что с ростом концентрации хлорида кальция увеличивается перенапряжение выделения водорода (на 30-40 мВ). Вероятным объяснением может быть образование труднорастворимого осадка кальциевых солей, экранирующего поверхность платинового электрода и количество которого возрастает с увеличением концентрации ионов Са+ . В связи с этим и происходит заметное повышение напряжения на электролизере, отмеченное ранее в работе [95] при электрохимическом получении гипохлорита кальция.

Катодные вольтамперные кривые, снятые на более доступных по стоимости электродных материалах для практического электролиза - графите, стали, меди и титане — представлены на рисунках 3.7 и 3.8. Вольтамперные кривые показывают, что невысокое перенапряжение выделения водорода после платины наблюдается на графитовом электроде (рис.3.7, кривая 2)? в то время как электровосстановление ионов водорода на титановом катоде (рис. 3.8, кривая 2) идет с самым высоким перенапряжением. Такое поведение характерно для металлов, покрытых фазовыми оксидами в области потенциалов выделения водорода и оказывающих на процесс тормозящее влияние. Следовательно, наиболее подходящим материалом катода для электролиза раствора хлорида кальция является графит.

Похожие диссертации на Электролиз водных растворов хлорида кальция: закономерности протекания электродных реакций и синтез кальцийсодержащих соединений