Введение к работе
Актуальность темы диссертации.
Система управления и защиты реактора (СУЗ) отвечает за безопасность эксплуатации АЭС, поэтому к пей предъявляются наиболее высокие требования по надежности и стойкости к внешним воздействиям, в том числе требования по сейсмостойкости.
Основным методом подтверждения сейсмостойкости
электрооборудования АЭС долгое время являлись непосредственные испытания каждого вида оборудования. Однако, данный метод имеет ряд недостатков: высокая стоимость проведения испытаний, необходимость изготовления образца для испытаний каждого вида оборудования и проведения повторных испытаний при незначительных изменениях в конструкции.
На рубеже тысячелетия произошла смена поколений электрооборудования СУЗ. Новое оборудование создавалось на современной конструктивной и элементной базе, что связано с необходимостью повышения рентабельности его разработки и изготовления.
В тоже время, внимание контролирующих организаций к проблеме сейсмостойкости АЭС с каждым годом становится более пристальным, что выражается в большей детализации задаваемой информации, большем объеме различных требований для различных типов оборудования.
Дополнительные трудности, особенно при поставке оборудования на зарубежные АЭС, возникают из-за отличия в методиках подтверждения сейсмостойкости оборудования по отечественным и зарубежным стандартам, что приводит к неопределенности при его квалификации. Имеющиеся методики не использовали расчетные методы исследования конструкции шкафов электрооборудования, не использовался ранее накопленный опыт, полученный при подтверждении сейсмостойкости аналогичного оборудования уже введенного в эксплуатацию.
Таким образом, возникло противоречие между ужесточающимися требованиями, предъявляемыми к оборудованию СУЗ АЭС в части сейсмостойкости и традиционными методами их подтверждения.
Это определило актуальность решения задачи разработки научно-методического аппарата квалификации электрооборудования СУЗ по критерию сейсмостойкости, что имеет существенное значение для атомной энергетики.
Целью работы являлось обеспечение стойкости электрооборудования СУЗ АЭС к заданным сейсмическим воздействиям.
Объектом исследования является электрооборудование СУЗ, которое представляет собой совокупность функциональных узлов, электрически соединенных между собой кабельными линиями. Конструктивно все оборудование расположено в типовых электротехнических шкафах.
Предметом исследования являются динамические свойства конструкций шкафов электрооборудования СУЗ, требования к электрооборудованию в части
сейсмических воздействий и режимы испытаний, подтверждающие выполнение этих требований.
Научной задачей работы являлась разработка научно-методического аппарата квалификации электрооборудования СУЗ по критерию сейсмостойкости, на основе современных расчетных и экспериментальных технологий, которая включает решение следующих частных задач:
-
Разработка методики формирования режимов испытаний электрооборудования СУЗ на сейсмостойкость на основании заданных спектров ответа.
-
Создание математических моделей шкафов электрооборудования и их верификация по результатам модальных испытаний.
-
Создание алгоритма проведения квалификации электрооборудования СУЗ на сейсмостойкость.
-
Формирование структуры базы данных, на основе результатов расчетов и испытаний электрооборудования на сейсмостойкость.
Новизна научных результатов заключается в следующем.
-
Разработана методика формирования режимов испытаний электрооборудования СУЗ на сейсмостойкость, впервые позволяющая использовать в качестве исходных данных спектры ответа.
-
Разработаны и верифицированы по результатам модальных испытаний математические модели шкафов электрооборудования СУЗ, детально учитывающие их конструктивные особенности и условия закрепления.
-
Предложен новый алгоритм проведения квалификации электрооборудования СУЗ на сейсмостойкость, основанный на комплексном использовании накопленных результатов расчетных и экспериментальных исследований и разработанных методик.
-
Создана база данных по результатам расчетов и испытаний электрооборудования СУЗ на сейсмостойкость, структура которой, по совокупности учитываемых параметров, не имеет прямых аналогов в отрасли.
Практическая значимость полученных в диссертации результатов.
-
Методика формирования режимов испытаний электрооборудования СУЗ на сейсмостойкость на основании заданных спектров ответа позволяет сформировать уровни испытательных воздействий, как для электрооборудования СУЗ, так и для другого промышленного электрооборудования.
-
Математические модели шкафов электрооборудования позволяют определять нагрузки на блоки аппаратуры и проводить подтверждение на стойкость к различным внешним механическим воздействиям.
-
Алгоритм проведения квалификации электрооборудования СУЗ на сейсмостойкость позволяет проводить подтверждение сейсмостойкости с учетом требований современных отечественных и международных стандартов.
4. Структура базы данных позволяет сократить сроки проектирования вновь разрабатываемого электрооборудования СУЗ и обеспечить соответствие его международным нормам и требованиям.
Достоверность научных результатов определяется применением при решении поставленных задач апробированных методов анализа механических систем, в том числе метода конечных элементов, верификацией разработанных моделей, достаточной для практики сходимостью результатов численных расчетов с аналитическими решениями и с экспериментальными данными, полученными на базе сертифицированного испытательного центра ФГУП "НПП ВНИИЭМ".
Ценность научных работ соискателя заключается в развитии современных научных подходов в области расчетного и экспериментального анализа динамики конструкций, а именно:
в проведении численного моделирования сложных конструкций, расчетов во временной и частотной области и их верификации на основе экспериментального определения динамических характеристик;
в решении обратной задачи по формированию нестационарных процессов по заданным спектрам ответа.
Внедрение. Результаты работы были использованы для квалификации электрооборудования СУЗ, изготовленного ФГУП "НПП ВНИИЭМ" для ряда российских и зарубежных АЭС (АЭС "Тяньвань", "Куданкулам", энергоблоки Ростовской, Кольской, Калининской АЭС и др.)
Основные положения, полученные лично автором и выносимые на защиту.
-
Методика формирования режимов испытаний электрооборудования СУЗ на сейсмостойкость, позволяющая использовать в качестве исходных данных спектры ответа.
-
Математические модели шкафов электрооборудования, учитывающие конструктивные особенности этих шкафов (крепежные элементы, несущий профиль сложного сечения, условия закрепления и др.)
-
Алгоритм проведения квалификации электрооборудования СУЗ на сейсмостойкость, позволяющий оптимально применить результаты расчетов, испытаний и разработанные методики.
-
Структура базы данных, созданная на основе результатов расчетов и испытаний электрооборудования на сейсмостойкость, дающая возможность осуществить поиск прототипов оборудования, протоколов испытаний, и выполнить оценку предъявляемых к поставляемому оборудованию требований.
Апробация работы. Результаты работы докладывались и обсуждались на Международной конференции MSC Software в 2005 и 2007 гг., а также на семинаре в НТЦ ЯРБ 2010 г.
Публикации. Основные результаты диссертационной работы, полученные в диссертации, опубликованы в 5 работах, объемом 3 п.л., в том числе: научных статей, опубликованных в изданиях по перечням ВАК - 5.
Структура и объем работы.
Диссертация состоит из введения, 4 глав основного текста, заключения, списка литературы. Объем диссертации составляет 158 страниц, включая 22 таблицы, 75 рисунков, список литературы из 112 наименований.