Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Зиновьев Денис Владимирович

Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств
<
Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Зиновьев Денис Владимирович. Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств : Дис. ... канд. техн. наук : 05.27.01 Москва, 2005 122 с. РГБ ОД, 61:05-5/4228

Содержание к диссертации

Введение

Глава 1. Полностью цифровые системы ФАПЧ 11

1.1. Назначение и технические характеристики систем ФАПЧ и синтезаторов частот на их основе 11

1.2. Построение синтезаторов частот на основе систем ФАПЧ 13

1.3. Системы ФАПЧ на цифровых логических элементах 14

1.4. Генераторы, управляемые цифровым кодом, на основе аналоговых блоков 19

1.5. Генераторы, управляемые цифровым кодом, на основе элементов задержки 20

1.6. Полностью цифровые системы ФАПЧ, построенные на основе

управляемых цифровым кодом генераторов 25

1.7. Выводы и постановка задачи 28

Глава 2. Математическое описание системы ФАПЧ на цифровых логических элементах 30

2.1. Интегро-дифференциальное уравнение аналоговой системы ФАПЧ 30

2.2. Математическая модель системы ФАПЧ на цифровых логических элементах 33

2.3. Передаточная характеристика системы ФАПЧ на цифровых логических элементах 36

2.4. Устойчивость системы ФАПЧ на цифровых логически элементах 39

2.5. Фильтрующие свойства системы ФАПЧ на цифровых логических элементах 41

2.6. Ошибка слежения системы ФАПЧ на цифровых логических элементах 44

2.7. Связь временного джиттера со спектральной плотностью мощности фазового шума 47

2.8. Проектирования полностью цифровой системы ФАПЧ 52

2.9. Выводы 53

Глава 3. Методика определения временной нестабильности периода выходных колебаний полностью цифровой системы ФАПЧ 54

3.1. Воздействие помех на узлы полностью цифровой системы ФАПЧ 55

3.2. Шумовые характеристики генераторов колебаний и систем ФАПЧ 58

3.3. Спектральная плотность мощности фазового шума кольцевого генератора 64

3.4. Расчет временной нестабильности периода выходных колебаний системы ФАПЧ на цифровых логических элементах, обусловленной действием фазового шума кольцевого генератора 68

3.5. Расчет алгоритмического временного джиттера системы ФАПЧ, на цифровых логических элементах 72

3.6. Выводы по главе 79

Глава 4. Проектирование управляемого цифровым кодом генератора для систем ФАПЧ на цифровых логических элементах 80

4.1. Формирование кода перестройки частоты 80

4.2. Кольцевой генератор на управляемых цифровым кодом элементах задержки 85

4.3. Результаты моделирования 90

4.4.Выводы 99

Глава 5. Пример разработки системы ФАПЧ на цифровых логических элементах 101

5.1. Структурная схема разработанной системы ФАПЧ на цифровых логических элементах 103

5.2. Схема фазового компаратора 104

5.3. Схема частотного компаратора 106

5.4. Технические характеристики системы ФАПЧ 109

5.7. Выводы Ill

Заключение 112

Список литературы

Введение к работе

Системами фазовой автоподстройки частоты (ФАПЧ) называются радиотехнические устройства, предназначенные для формирования колебаний, когерентных колебанию высокостабильного эталонного источника сигнала. Системы фазовой автоподстройки частоты используются при построении синтезаторов частот и систем синхронизации для радиотехнических устройств и вычислительной техники.

С уменьшением проектных норм КМОП технологии, повышением степени интеграции элементов на одном кристалле и развитием концепции «система на кристалле» аналоговые системы ФАПЧ по своим технико-экономическим параметрам перестают удовлетворять разработчиков. Основные недостатки аналоговых систем ФАПЧ состоят в следующем:

1) аналоговые системы ФАПЧ чувствительны к помехам, вызванным переключениями цифровых логических схем;

2) топологические приемы, предназначенные для уменьшения воздействия помех от цифровых логических схем на аналоговые схемы, связаны с существенным увеличением площади на кристалле интегральной схемы;

3) применение фильтров нижних частот в аналоговых системах ФАПЧ связано с существенным увеличением площади на кристалле интегральной схемы и не всегда могут быть выполнены по технологиям цифровых КМОП процессам производства ИС;

4) переработка схем аналоговых систем ФАПЧ для новых технологических процессов занимает значительное время, что повышает стоимость разрабатываемой ИС.

Выходом из сложившейся ситуации является использование систем ФАПЧ, построенных только на цифровых логических элементах. В настоящее время такие системы ФАПЧ применяются в устройствах низкоскоростной связи и управления, радиоавтоматике, радиоизмерительных комплексах и других системах авторегулирования. К рабочим характеристикам систем ФАПЧ этих областей применения не предъявляются жесткие требования.

Применение построенных на цифровых логических элементах систем ФАПЧ в схемах тактирования цифровых процессоров и синтезаторах частоты для интегральных радиотехнических устройств сдерживает отсутствие методов проектирования этих систем. Отсутствие методов проектирования систем ФАПЧ, построенных на цифровых логических элементах, приводит к тому, что:

1) не представляется возможным оцепить рабочие характеристики таких систем ФАПЧ на начальных этапах проектирования;

2) не разработаны методики моделирования таких систем ФАПЧ в составе сложных функциональных систем (в системах на кристалле);

3) в основе применяемых в настоящее время систем ФАПЧ, построенных на цифровых логических элементах, лежат структурные схемы, разработанные ведущими иностранными компаниями (Motorola, Texas Instuments) для узких областей применения; в большинстве случаев рабочие параметры этих структурных схем систем ФАПЧ не удовлетворяют тем требованиям, которые к ним предъявляются со стороны отечественных разработчиков.

Таким образом, разработка методой проектирования систем ФАПЧ, построенных только на цифровых логических элементах, для улучшения их технических характеристик является актуальной задачей.

ЦЕЛЬ РАБОТЫ

Целью работы является разработка технических решений и методов проектирования, которые Си обеспечивали создание систем ФАПЧ на цифровых логических элементах с такими техническими характеристиками, которые бы позволили использовать эти системы для тактирования серийно выпускаемых отечественных процессоров и сложных систем на одном кристалле. ЗАДАЧИ ИССЛЕДОВАНИЯ

Для достижения этой цели необходимо решить следующие задачи:

1) разработать математическую модель системы ФАПЧ на цифровых логических элементах;

2) разработать методику определения временной нестабильности выходных колебаний системы ФАПЧ на цифровых логических элементах;

3) предложить технические решения для построения управляемых цифровым кодом генераторов, обеспечивающих низкую погрешность установления выходной частоты колебаннґ:;

4) провести исследовании тестовых интегральных схем системы ФАПЧ на цифровых логических элементах для подтверждения предложенных технических решений и методов.

НАУЧНАЯ НОВИЗНА

Научная новизна полученных результатов.

1. Создана математическая модель системы ФАПЧ, построенной на цифровых логических элементах, обеспечивающая поведенческое моделирование системы средствами САПІ4.

2. Предложены математические выражения для оценки фильтрующих свойств и определения устойчивости функционирования системы ФАПЧ, построенной на цифровых логических элементах.

3. Предложена методика определен:;.! численного значения временной нестабильности периода выходных колебаний системы ФАПЧ, построенной на цифровых логических элементах. Методика позволяет определить значение временного джиггера систем ФАПЧ на цифровых логических элементах, обусловленного алгоритмом функционирования этой системы ФАПЧ.

4. Разработана новая схема управляемого цифровым кодом генератора, построенная на основе элемента задержки «current starved», которая обеспечивает диапазон рабочих часто: от 700 до 1100 МГц с шагом перестройки частоты не более 4-12 МГц.

5. Для преобразования высокоразрядного кода с выхода схемы управления системы ФАПЧ в низкоразрялный код перестройки кольцевого генератора предложено использовать сигма-дельта модулятор с сигналом ошибки в цепи обратной связи, что обеспечивает возможность применения в составе системы ФАПЧ перестраиваемых цифровым кодом генераторов с любой разрядностью управляющего кода, не превышающего 16 бит.

ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ

Практическая значимость работы состоит в следующем:

1. Предложенные математическая модель, математические выражения для оценки фильтрующих свойств и определения устойчивости функционирования системы ФАПЧ могут оыть использованы для разработки систем ФАПЧ, построенных тол;.ко на цифровых логических элементах, для серийно выпускаемых отечественных процессоров.

2. Методика определения численного значения временной нестабильности периода выходных колебаний системы ФАПЧ, построенной на цифровых логических элементах, позволяет определять этот рабочий параметр на начальных этапах разработки ИГ, включающих эту систему ФАПЧ.

3. Предложенная структурная схема системы ФАПЧ, состоящая из частотного компаратора, фазового компаратора, схемы управления, программируемого делителя частоты, управляемого цифровым кодом генератора и сигма-дельта модулятора; может быть использована для тактирования отечественных процессоро::.

4. Предложенные в диссертационной работе технические решения и методики проектирования были использованы при разработке системы ФАПЧ для 32 - разрядного RISC - процессора (экспериментальный образец) в компании «Юникор Микросистемы», Зеленоград.

ДОСТОВЕРНОСТЬ РЕЗУЛЬТАТОВ

Достоверность предложенииГі математической модели, математических выражений для оценки фильтрующих свойств и определения устойчивости функционирования, методики определения нестабильности периода выходных колебаний систем ФЛПЧ, построенных на цифровых логических элементах, подтверждена результатами компьютерного моделирования и результатами экспериментальных исследований тестовых образцов интегральных схем.

Предложенные в диссертационной работе положения основаны на законах теории электрических цепей, теории случайных процессов и теории автоматического управления.

Возможность использования предложенной математической модели и методики определения нестабильности периода выходных колебаний систем ФАПЧ, построенных на цифровых логических элементах, подтверждена их успешными использованиями при разраоотке новых устройств электронной техники.

НА ЗАЩИТУ ВЫНОСЯТСЯ

1. Математическая модель системы ФАПЧ, построенной на цифровых логических элементах, обеспечивающая поведенческое моделирование этой системы средствами САПР при разработке процессоров и сложных функциональных схем на одном кристалле.

2. Методика определения временной нестабильности периода выходных колебаний системы ФАПЧ на цифровых логических элементах, позволяющая определить этот параметр на начальных этапах.

3. Структурная схема системы ФЛПЧ, которая обеспечивает повышение диапазона выходных частот и сшпконче временного алгоритмического джиттера.

Л ПРОКАТ!!: Я РАБОТЫ

Основные результат -г лчесортацпопи ч работы, а так же результаты, относящиеся к тематике положений, вынесенных на защиту, докладывались на следующих научно - технических конференциях:

1) Седьмая всероссийской научно-технической конференция молодых ученых и студентов «Современные проблемы радиоэлектроники», Красноярский государственный технический университет, г. Красноярск, апрель 2005 г.,

2) Всероссийская научно-техническая конференция «Электроника и информатика - 2005», МГИЭТ, г. Москва, апрель 2005 г.,

3) Всероссийская научно-техническая конференция «Электроника и информатика - 2004» », МГИЭТ, г. Москва, апрель 2004 г.,

4) Десятая международная научно-техническая конференция студентов и аспирантов «Радиоэлектроника, электротехника и энергетика, МЭИ, г. Москва, март 2004 г.,

5) Всероссийская научно-техническая конференция «Электроника и информатика - 2003», МГИЭТ, г. Москва, апрель 2003 г.,

6) Девятая международная научно-техническая конференция студентов и аспирантов «Радиоэлектроника, электротехника и энергетика, МЭИ, г. Москва, март 2003 г.

ПУБЛИКАЦИИ

Результаты диссертационной работы отражены в трех статьях, тезисах шести докладов.

СТРУКТУРА И ОБЪЕМ ДИССЕРТАЦИИ

Диссертация состоит из введения, пяти глав, заключения и списка литературы. Диссертация изложена на 120 страницах основного текста, содержит 40 рисунков и 5 таблиц к основному тексту, списка литературы из 71 наименования.

Системы ФАПЧ на цифровых логических элементах

Далее преобразованная последовательность импульсов делится на целое число L так, что выходной сигнал делителя подстроен по фазе с шагом подстройки Тс или 2nlL рад. Таким образом, цифровая система ФАПЧ обеспечивает равенство фаз выходного и входного сигналов.

После установления равенства фаз выходного и входного сигналов полностью цифровая система ФАПЧ, в которой отсутствует накопление управляющих сигналов, больше не обеспечивает управления. В случае сдвига частоты входного сигнала относительно собственной частоты петли системы ФАПЧ фаза выходного сигнала не может иметь то же математическое ожидание, что и фаза входного сигнала.

Значение фазы выходного сигнала в данном случае будет смещено относительно математического ожидания фазы входного сигнала. Величина этого смещения зависит от взаимного сдвига частот и дрожания фазы входного сигнала. Явление такого же рода наблюдается и в аналоговых системах ФАПЧ, имеющих достаточно низкие уровни усиления в петле обратной связи [1].

В случае увеличения уровня усиления в петле обратной связи, расширяется полоса захвата, однако ухудшается подавление дрожания фазы входного сигнала, что приводит к увеличению дрожания фазы выходного сигнала.

Основная проблема цифровых систем ФАПЧ с двоичным выходом фазового детектора отмечена в [4]. В этой работе исследовалась простая петля с двоичным выходом фазового компаратора и фильтр случайных блужданий. Проблема состоит в невозможности совместить достаточную ширину полосы захвата с возможностью подавления дрожания фазы. Улучшение в характеристиках подавления дрожания фазы приводит к сужению полосы захвата. В любом случае, дрожание фазы носит в основном характер медленных изменений.

Система ФАПЧ, построенная на цифровых логических элементах, является для фазовых дрожаний низкочастотным фильтром, поэтому подавление высокочастотных составляющих фазовых дрожаний сравнительно просто. Однако длину фильтра нижних частот такой системы ФАПЧ или коэффициент деления выходной частоты необходимо делать сравнительно большими для подавления дрожаний, сильно коррелированных на длительном интервале времени [1]. Эти способы могут быть использованы лишь в ущерб ширине полосы удержания и времени захвата.

Основной недостаток рассмотренной выше структурной схемы полностью цифровой системы ФАПЧ связан со способом формирования выходной частоты. Для формирования этой частоты необходимо иметь стабилизированный генератор, выходная частота которого превосходила бы верхнюю границу требуемого диапазона выходных частот этой системы ФАПЧ. Этот недостаток существенно сужает область использования подобных полностью цифровых систем ФАПЧ.

Выходом из сложившейся ситуации является применение в полностью цифровых системах ФАПЧ генераторов, управляемых цифровым кодом. В следующих двух разделах будут рассмотрены используемые в системах ФАПЧ на цифровых логических элементах управляемые цифровым кодом генераторы.

Рассмотрим вначале способы построения перестраиваемых цифровым кодом генераторов на основе аналоговых блоков и отметим их основные недостатки.

В системе ФАПЧ [10] используется управляемый напряжение генератор и цифро-аналоговый преобразователь цифрового кода в управляющее напряжение. Разрядность этого преобразователя, построенного на источниках тока с весовыми коэффициентами, составляет десять бит. Построение перестраиваемого генератора на схеме ЦАП и генераторе, управляемом напряжением, позволяет получить широкий диапазон выходных частот. В работе [10] нижняя граница диапазона выходных частот системы ФАПЧ составляет 76,8 МГц, верхняя граница - 876,8 МГц, а шаг перестройки частоты равен 0,856 МГц. Принципиально, подобные структурные схемы перестраиваемого цифровым кодом генератора позволяют получить низкую погрешность установления требуемой частоты системой ФАПЧ. Погрешностью установления частоты системой ФАПЧ будем называть разность между частотой опорного генератора /опргн и значением N-fnpm, где пргн. -частотой перестраиваемого генератора, a N-коэффициент деления делителя частоты.

Модификацией структурной схемы перестраиваемого генератора [10] может выступать генератор, в котором изменение диапазонов рабочей частоты выполняется цифровым способов, а точная подстройка частоты в пределах выбранного диапазона - изменением управляющего напряжения или тока.

Совершенно иной подход к построению перестраиваемого генератора предложен в работе [21]. Погрешность поддержания частоты тактирования в системах обработки графической информации составляет сотни - десятки герц. Ни одна из известных структурных схем перестраиваемых генераторов не может обеспечить такую точность.

Передаточная характеристика системы ФАПЧ на цифровых логических элементах

Разрядность этого кода ограничена главным образом сложностью схемотехнического исполнения преобразователя. Коэффициент пропорциональности.ЛГЧФД(его так же называют коэффициентом передачи или . усиления частотно-фазового детектора) зависит от схемотехнической реализации частотно-фазового детектора и свойств преобразователя фазовой ошибки. к Цифровой код, пропорциональный фазовой ошибке, поступает на цифровой фильтр нижних частот., Для примера положим, что в качестве этого фильтра используется не рекурсивный фильтр второго порядка. Разностное уравнение для такого фильтра имеет вид y[n]fa0-x[n] + arx[n-\], , " . (2.26) где коэффициенты а0\ ах - неотрицательные числа. Перестраиваемый генератор представляет собой кольцевой генератор с . . изменяемыми цифровым кодом задержками его элементов [20] - [26], [28] [37]. Фаза колебаний Фпг[«] кольцевого генератора может быть представлена " . і как сумма значения фазы колебаний Фщ-[л+1] и добавочной величины ПГ НЧФН . Фпг \п ] = Фпг \л+1)+К Nmrb \п]. (2.27 В этом выражении Nm l [п] - цифровой код с выхода рекурсивного фильтра. Коэффициент Кпг определяется выражением (2.28) где АТПГ - приращение задержки в кольцевом генераторе при изменении цифрового кода, на единицу младшего разряда. Фазу колебаний с выхода делителя частоты можно представить в виде дел. Основываясь на (2.23) - (2.29), получим систему линейных разностных уравнений полностью цифровой системы ФАПЧ ФЧФдН = Фопорг.Н-Фдел.[4 ПР Н = ЧФД ФЧФД [" - !]. НЧФЫ = «О- ПРИ + «Г ПР [И-1]. (2-30) ФпгНаФпг[и + 1] + пг- нчфН. "дел.

В режиме синхронизма ФЧФД[«] должно быть равно нулю. В реальных полностью цифровых системах ФАПЧ ФЧфд[«] должна удовлетворять условию ФЧФД[фФД0ПСТ. (2.31)

Как и в случае аналоговой системы ФАПЧ, здесь Фдопст - малое допустимое значение. В полностью цифровых системах ФАПЧ достижимое наименьшее значение фазовой ошибки Фдопст. определятся значением дгпг.

Сравнение выражений (2.16) и (2.19) с (2.30) показывает, что уравнения, описывающие полностью цифровую систему ФАПЧ, не имеет существенных отличий от интегро-дифференциального уравнения, составленного для аналоговой системы ФАПЧ. Вместо интегро-дифференциального уравнения полностью цифровая система ФАПЧ описывается системой разностных уравнений.

Полученная система разностных уравнений (2.30) предназначена для моделирования полностью цифровых систем ФАПЧ средствами САПР. Передаточная характеристика системы ФАПЧ на цифровых логических элементах Известно, что z- преобразование делает возможным заменить решение линейных разностных уравнений решением алгебраических уравнений [2].

Применение этого преобразования для решения разностных уравнений аналогично использованию преобразования Лапласа для решения дифференциальных уравнений. Используя z- преобразование, по разностному уравнению системы можно определить ее передаточную функцию. Такие передаточные функции называют передаточными функциями в z - области.

Для анализа аналоговых систем ФАПЧ широко используется представление передаточных функций отдельных блоков этой системы в 5-области. Полностью цифровая система ФАПЧ является дискретной системой. Для анализа дискретных систем используют представление передаточных функций в z- области. Принципиальное отличие между z областью us- областью состоит в том, что z - область предназначена для описания дискретных систем, a s -область для описания систем непрерывного времени [6], [7]. Так, для описания аналоговой системы ФАПЧ в s - области используется следующий набор параметров Кгун - коэффициент передачи генератора, управляемого напряжением, ЛГЧФД - коэффициент передачи частотно-фазового детектора, N-коэффициент деления делителя частоты [7]. Используя эти параметры можно записать передаточную функцию аналоговой системы ФАПЧ второго порядка с разомкнутой петлей обратной связи в таком виде N-s где ГФНЧ (s) -передаточная функция фильтра нижних частот. Тогда передаточная функция аналоговой системы ФАПЧ второго порядка с замкнутой петлей обратной связи имеет вид

Шумовые характеристики генераторов колебаний и систем ФАПЧ

Сигнал на выходе любого генератора частоты или системы ФАПЧ представим в виде Kut(0 = V(t)-f[o)0t + f (t)], (3.1) где со0 - номинальная частота колебаний, a V(t), f (t) - мгновенная амплитуда и мгновенная фаза колебаний генератора, соответственно. В большинстве случаев функция V(t) не оказывает влияния на частоту колебаний. Исключением могут быть нелинейные усилительные каскады и умножители частот.

Выберем начало отсчета и значение номинальной частоты таким образом, чтобы среднее значение ф(() было равно нулю 1м,«Г/2 -«-Г/2)=0. (3.2)

Значение мгновенной угловой частоты колебаний определяется как производная от фазового угла по времени

Из выражений (3.1) и (3.3) следует, что p(t) представляет собой мгновенное значение фазового сдвига генератора колебаний или системы ФАПЧ по отношению к фазе идеального генератора с частотой колебаний а 0.

При описании свойств перестраиваемых цифровым кодом генераторов или систем ФАПЧ принято использовать следующие понятия.

1) Спектральная плотность шума SM(F), определяемая отношением мощности шумов на частоте F одной боковой полосы в полосе частот 1 Гц к мощности сигнала, размерность спектральной плотности шума Гц.

2) Спектральная плотность фазовых флуктуации S9(F), определяемая как средний квадрат отклонения фазы сигнала от ее номинального значения под действием шумов на частоте F в полосе 1 Гц. Поскольку S (F) вызвана действием шумов обеих боковых полос, то Stp(F) = 2-Slu(F). Спектральная плотность фазовых флуктуации имеет размерность рад21 Гц.

3) Спектральная плотность частотных флуктуации Sf(F), определяемая как средний квадрат отклонения частоты сигнала от ее номинального значения под действием шумов на частоте F в полосе 1 Гц.

Спектральная плотность частотных флуктуации имеет размерность Гц2/Гц [1]. Спектральная плотность частотных флуктуации связана со спектральной плотностью шума и спектральной плотностью фазовых флуктуации соотношениями Sf(F) = 2.F2.SM(F), (3.4) Sf(F) = F2-S,(F). (3.5) Шумовые свойства генераторов колебаний и систем ФАПЧ принято описывать фазовым шумом, который определяется выражением {Au } = 10-log P. (3.6) Числитель дроби PslJebunJ(ct)0+Aco,lHz) есть мощность боковой полосы шириной 1 Гц на частоте со 0 + Асо , а знаменатель Рсагпег - мощность колебаний на несущей частоте. Фазовый шум трактуется как значение ослабления спектральной плотности мощности выходного напряжения генератора на г дБ боковой частоте по отношению к несущей и измеряется в —. Гц

Фазовый шум учитывает эффекты флуктуации фазы и флуктуации амплитуды колебаний генераторов. Флуктуации амплитуда колебаний кольцевых генераторов в большинстве случаев подавляются механизмами ограничения амплитуды схем этих генераторов. Поэтому фазовый шум в основном определяется флуктуациями фазы.

При определении фазового шума или временной нестабильности колебаний кольцевых генераторов, как правило, принимают во внимание только внутренние источники тепловых шумов. Тепловой шум транзисторов вызывает флуктуации фазы выходных колебаний кольцевых генераторов, которые приводят к размытию спектра этих колебаний. Спектр колебаний помимо линии на номинальной частоте будет иметь боковые шумовые полосы [41], [49].

Понятия спектральных плотностей - это теоретические понятия, которые соответствуют процессам бесконечной длительности, бесконечной полосе частот [1]. При практических измерениях шумовых свойств перестраиваемых кольцевых генераторов или систем ФАПЧ располагают процессами конечной длительности и неидеальной измерительной техникой. Поэтому точность измерения спектральных плотностей ограничивается следующими факторами 1) диапазон частот преобразователей Фурье ограничен; 2) конечный набор результатов измерений приводит к появлению статических ошибок; 3) некоторые спектральные анализаторы, как впрочем, и программы моделирования схем генераторов на транзисторном уровне, определяют спектральные плотности только для дискретного набора частот.

Для ряда задач предпочтительно характеризовать шумовые свойства кольцевых генераторов не значением фазового шума, а временной нестабильностью периода выходных колебаний этого генератора, т.е. временного джиттера. То же самое относиться к системам ФАПЧ, предназначенным для использования в системах тактирования процессоров.

Временной джиттер — статистическая величина, которая характеризует колебательный процесс любого генератора. Под воздействием внутренних и внешних источников шумов, период колебаний генератора принимает различные значения. Положим, что тп период колебаний в и-цикле.

Отклонение значения «-ного периода колебаний генератора от среднего значения периода колебаний обозначим так (рис.3.1.а.)

Кольцевой генератор на управляемых цифровым кодом элементах задержки

В главе 1 показано, что существует два подхода к построению управляемым цифровым кодом генераторов частоты для систем ФАПЧ на основе цифровых логических элементов. Первый подход заключается в использовании управляемых напряжением генераторов частоты и цифро-аналоговых преобразователей, а второй состоит в использовании кольцевых генераторов частоты с коммутируемыми цифровым кодом транзисторами или элементами задержки. В разделе 1.4 показано, что в полностью цифровых системах ФАПЧ для тактирования процессорных устройств второй подход предпочтительнее. Наиболее важными рабочими характеристиками кольцевых генераторов являются диапазон рабочих частот и шаг перестройки частоты.

Рабочие характеристики кольцевого управляемого цифровым кодом генератора во многом зависят от выбора элемента задержки [57], управляемого цифровым кодом. В основе предложенного кольцевого генератора для полностью цифровых систем ФАПЧ лежит элемент задержки, показанный на рис. 4.5. Этот элемент задержки получен путем модификации элемента задержки «current starved» (рис. 4.6) [57,58].

Элемент задержки «current starved» построен на двух инверторах, в один из которых введены два транзистора М3 и Л/6 для задания рабочего тока транзисторов М4 и М5. Транзисторы Мг, М6, Л/,, М5 и М7, М8 образуют два инвертора. Транзисторы Л/, и М2 необходимы для задания рабочих токов инвертора транзисторах М3, М6, М4 и М5. Время задержки элемента «current starved» определяется временем задержки обоих инверторов. Время задержки инвертора на транзисторах М7, М8 фиксировано и зависит от геометрических размеров этих транзисторов. Время задержки инвертора на транзисторах М3, М6, МА и Ms можно изменять за счет изменения, напряжения прикладываемого к затворам транзисторов Мх и Мъ. Изменение этого напряжения приводит к изменению тока, протекаемого через транзисторы М4 и М s.

В предлагаемом элементе задержки изменение тока I достигается путем подачи напряжения логического нуля или логической единицы на транзисторы Мх-Мл. Таким образом можно реализовать шестнадцать различных значений тока, протекаемого через транзисторы М9 и М8, этим достигается изменение времени задержки этою элемента в зависимости от цифрового кода.

Результаты моделирования показывают, HLO оптимальным по линейности изменения времени задержки является соотношение Wp5/Lp5=\,5.

Абсолютные значения W % и LpS должны бьиь выбраны таким образом, что бы при значениях логического нуля на затворах транзисторов М1-М4 время задержки схемы было максимальным. Значения WpX-Wp4 и Lpi Lp4 транзисторов М, -М4 выбираются, чтобы время -задержки при Д -Д, =1 было минимальным. Структурная схема предложенного в диссертации кольцевого генератора, построенного на рассмотренном выше элементе задержки, представлена на рис. 4.7. Схема включает элемент задержки, управляемый цифровым кодом, инверторы и проходные ключи, которые используются для увеличения диапазона выходных частот перестраиваемого цифровым кодом генератора

Главным преимуществом предложенной в диссертации генератора частоты является вчетверо меньшее количество перестраиваемых элементов задержки и, как следствие меньшая площадь на кристалле.

Для точной подстройки частоты используется коммутация транзисторов в каждой из четырех идентичных секций перестраиваемого генератора. Четыре диапазона рабочих частот имеют полосу перекрытия в 15 МГц - 20 МГц.

Минимальная частота колебаний такого перестраиваемого генератора составляет 60 МГц, а максимальная частота - 430 МГц.

Похожие диссертации на Особенности проектирования полностью цифровых систем ФАПЧ для процессорных устройств