Введение к работе
Актуальность темы. Освоение скважины - комплекс технологических и организационных мероприятий, направленных на перевод простаивающей по той или иной причине скважины в разряд действующих. Выводом скважин на установившийся режим эксплуатации принято называть процесс освоения скважин, в частности, оборудованных установками электроцентробежных насосов (УЭЦН), после бурения, текущего или капитального ремонта.
При выводе скважины на режим существуют значительные риски выхода УЭЦН из строя и ухудшения ресурсных возможностей погружного оборудования. Связано это со следующими особенностями:
1. В начальный период освоения может отсутствовать приток жидкости из пласта в скважину. В связи с этим, значительная часть тепловой энергии, выделяющейся при работе погружного электродвигателя (ПЭД) в составе УЭЦН, расходуется на его нагрев. Современные асинхронные ПЭД обычного исполнения, используемые в составе УЭЦН, возможно эксплуатировать при температурах до 120 С, высокотермостойкого исполнения - до 150 С. При длительной работе подобных электродвигателей в скважине в условиях недостаточного охлаждения возникает риск их перегрева и выхода УЭЦН из строя.
Данный факт осложняется тем, что измерение температуры ПЭД при выводе скважины на режим возможно только при наличии в составе УЭЦН специальных глубинных датчиков. В случае отсутствия подобных датчиков, во время освоения скважины необходимо непрерывно осуществлять контроль скорости потока скважинных флюидов, охлаждающих ПЭД, что также проблематично ввиду отсутствия распространенных методик расчета притока жидкости в скважину при нестационарных процессах.
С целью предотвращения перегрева ПЭД установку периодически останавливают на охлаждение, после чего производится ее повторный пуск. В данном случае, кроме увеличения времени вывода скважины на режим, происходит также и снижение ресурса УЭЦН. Связано это с тем, что многократные пуски насосной установки вследствие высоких значений пусковых токов асинхронного ПЭД приводят к снижению наработки УЭЦН на отказ и, соответственно, к уменьшению межремонтного периода работы скважины. Данный факт приводит к увеличению затрат компаний на проведение ремонтных работ по смене вышедшей из строя насосной установки и к уменьшению коэффициента эксплуатации скважины.
-
Еще одним фактором, осложняющим процедуру вывода скважины на режим, является наличие в откачиваемой насосом смеси свободного газа. В зависимости от газосодержания откачиваемой смеси характеристики ЭЦН могут существенно изменяться. В связи с этим, в процессе пуска скважин с высоким газовым фактором в определенных условиях возможен срыв подачи ЭЦН и выход из строя насосной установки. Зачастую при невозможности освоения подобных скважин в состав УЭЦН вводятся специальные устройства, уменьшающие негативное влияние свободного газа на характеристики насоса, что иногда значительно увеличивает стоимость насосной установки.
-
При освоении скважин, эксплуатирующих залежи со слабосцементированным коллектором, либо скважин после проведения гидроразрыва пласта (ГРП) важно не допускать резкого изменения забойного давления в начальный период вывода скважины на режим. При несоблюдении данного условия возникает большой риск попадания в ЭЦН значительного количества механических примесей, что также может привести к выходу насосной установки из строя.
Помимо перечисленных сложностей, в настоящее время ограничены и возможности управления процессом освоения скважин, оборудованных УЭЦН. В настоящее время регулирование процесса вывода скважины на режим возможно только с помощью двух операций: пуск - отключение УЭЦН и изменение частоты питающего тока электродвигателя. Регулирование частоты питающего тока установки, а соответственно, и частоты вращения вала электродвигателя, возможно при наличии в составе станции управления частотного преобразователя либо при использовании в качестве электропривода УЭЦН вентильного двигателя. Однако, в настоящее время нет однозначности при решении вопросов: «с какой частотой вращения вала электродвигателя предпочтительнее производить вывод скважины на режим?» и «возможно ли сократить количество пусков УЭЦН при освоении скважины?». Очевидно, что решение данных задач сильно зависит от особенностей эксплуатации каждой скважины. Однако, в настоящее время даже для условий эксплуатации конкретной скважины ответить на поставленные вопросы затруднительно.
Таким образом, вывод скважины на режим - это комплекс важнейших технологических процедур, связанный с определенными рисками потери работоспособности УЭЦН. Верные инженерно-технологические решения в данном процессе должны обеспечить последующую стабильную работу УЭЦН в скважине без потери ресурсных возможностей погружного оборудования.
Однако, несмотря на большую значимость описываемого процесса, в настоящее время возможности планирования работ по пуску скважины не всегда используются на практике. В связи с этим, процесс вывода скважины на режим иногда затягивается во времени, количество пусков и отключений УЭЦН увеличивается, что ведет к снижению наработки оборудования на отказ и завышенному расходу электроэнергии. Также ввиду неполного и неэффективного планирования данных работ, сокращается возможность оптимизации рассматриваемого процесса: сокращение времени вывода скважины на режим, уменьшение потребления электроэнергии при пуске установки, либо неснижение гарантированного ресурса УЭЦН.
Несмотря на явный интерес к обозначенной теме промысловых работников в некоторых нефтедобывающих регионах, данной проблеме в настоящее время уделяется недостаточно внимания со стороны отраслевой науки.
Для обеспечения возможности планирования работ по выводу скважин, оборудованных УЭЦН, на установившийся режим работы в диссертации рассмотрена физико-математическая модель системы «пласт - скважина - погружное оборудование», позволяющая прогнозировать изменение во времени основных технологических параметров работы скважины при ее освоении.
Иными словами, в работе рассмотрена разработка физико- математической модели процесса вывода скважины на режим. После внесения в нее исходных данных и сценарных условий (времени остановок и пусков УЭЦН, частоты вращения вала электродвигателя в различные интервалы времени) с помощью модели рассчитывается «поведение скважины» при ее освоении. Т.е. рассчитывается изменение во времени основных технологических параметров работы скважин, таких как давление на приеме УЭЦН, забойное давление, динамический уровень жидкости в затрубном пространстве, приток жидкости из пласта в единицу времени и пр.
Исходя из вышесказанного, сформулированы цель и основные задачи исследований.
Цель работы - создание физико-математической модели нестационарной эксплуатации добывающей скважины с помощью УЭЦН для обеспечения возможности оптимизации процесса вывода скважины на установившийся режим работы в конкретных геолого-физических условиях.
Основные задачи исследований
-
-
Построение физико-математической модели нестационарной работы основных элементов добывающей системы с УЭЦН при выводе ее на установившийся режим работы.
-
Разработка методики расчета характеристик ЭЦН, работающего на вязких газожидкостных смесях.
-
Оценка условий применимости разработанной физико- математической модели нестационарной эксплуатации добывающей системы с помощью УЭЦН.
-
Промысловая апробация созданной физико-математической модели процесса вывода скважины, оборудованной УЭЦН, на установившийся режим эксплуатации.
Научная новизна
Разработана физико-математическая модель системы «пласт - скважина - УЭЦН», позволяющая производить расчеты основных технологических параметров скважинной системы при ее нестационарной работе.
Основные защищаемые положения
-
-
-
Физико-математическая модель добывающей системы, позволяющая прогнозировать изменение основных технологических параметров работы данной системы при ее нестационарной эксплуатации.
-
Методика расчета изменения характеристик ЭЦН при его работе на вязких газожидкостных смесях.
-
Результаты промысловой апробации разработанной физико- математической модели нестационарной эксплуатации добывающей системы.
Практическая ценность работы
-
-
-
-
Созданная физико-математическая модель расчета процессов вызова притока, освоения и вывода на режим скважин, оборудованных УЭЦН, позволяет сократить время освоения скважин, спрогнозировать оптимальную стратегию пуска добывающей системы в работу еще перед спуском в скважину глубиннонасосного оборудования.
-
Физико-математическая модель добывающей системы позволяет производить интерпретацию процесса освоения скважины как гидродинамического исследования методом снятия кривых падения давления (уровня), в результате чего определяются геолого-промысловые характеристики дренируемого скважиной пласта и насыщающих его флюидов.
-
Разработана методика аналитического расчета изменения характеристик ЭЦН при его работе на вязких газожидкостных смесях для повышения точности расчетов, производимых с использованием созданной физико-математической модели. Данная методика также применима для проведения расчетов при выборе способа эксплуатации скважины, подборе глубиннонасосного оборудования и анализе эффективности работы скважин, оборудованных УЭЦН.
Апробация работы
Результаты диссертационной работы апробированы в промысловых условиях при выводе на режим пяти скважин ОАО «РИТЭК». Также результаты исследований и основные положения представлены в виде докладов на конкурсе на лучшую научно-техническую разработку молодых ученых и специалистов ОАО «РИТЭК», 2011 г. (г. Волгоград) и на научно-практической конференции, посвященной 20-летию компании ОАО «РИТЭК», 2012 г. (г. Москва). Основные результаты работы докладывались и обсуждались на научных семинарах кафедры разработки и эксплуатации нефтяных месторождений РГУ нефти и газа имени И.М. Губкина.
Публикации
По результатам выполненных научных исследований опубликовано 7 печатных работ, в том числе одна работа в материалах научной конференции и 6 научных статей в периодических научных и научно-технических изданиях, рекомендованных ВАК Министерства образования и науки РФ для публикации основных результатов диссертаций на соискание ученой степени кандидата и доктора наук.
Структура и объем работы
Диссертация состоит из введения, пяти глав и заключения, содержащего основные результаты и выводы. Общий объем работы составляет 134 страницы печатного текста, в том числе 6 таблиц, 30 рисунков. Список литературы включает 46 источников.
Благодарности. Автор выражает глубокую благодарность научному руководителю И.Т. Мищенко за плодотворные идеи, ценные советы и внимание в процессе работы над диссертацией. Автор выражает искреннюю признательность М.А. Мохову, В.И. Кокореву, В.И. Дарищеву, А.В. Клявлину, Е.А. Васильеву, К.А. Щеколдину, Д.В. Мальцевой, сотрудникам кафедры разработки и эксплуатации нефтяных месторождений РГУ нефти и газа имени И.М. Губкина и другим за неоценимую помощь в подготовке диссертации.
Похожие диссертации на Разработка физико-математической модели процесса освоения скважин с помощью УЭЦН
-
-
-
-
-
-