Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Рыжков Владимир Александрович

Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений
<
Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Рыжков Владимир Александрович. Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений : диссертация ... кандидата технических наук : 05.13.01 / Рыжков Владимир Александрович; [Место защиты: Моск. гос. технол. ун-т "Станкин"].- Москва, 2010.- 151 с.: ил. РГБ ОД, 61 10-5/3040

Введение к работе

Актуальность работы

В настоящее время в разных областях науки и деятельности человека (экономика, финансы, медицина, телекоммуникации, химия, биология, физика и т.п.) сформированы большие массивы разнородной информации. Такая информация может представлять собой переменные состояния каких-либо наблюдаемых объектов или процессов, например, машин, станков, комплексов и целых предприятий и храниться в виде электронных таблиц в базах данных.

В связи с этим актуальными становятся задачи анализа данных и получения в кратчайшие сроки информации о качественном распределении показателей, признаков и состояний изучаемых или используемых объектов на основании уже имеющейся о них информации с целью дальнейшего построения стратегии их применения и развития.

Специфика современных задач анализа данных такова, что часто для их решения предоставляется либо чрезмерно большой массив разнородных данных, либо, наоборот, количество данных для анализа мало и значения в некоторых их признаках отсутствуют или пропущены.

Для решения таких задач используются методы хранилищ данных, статистические методы, эволюционные алгоритмы, стохастические методы, методы нечеткой логики, методы искусственных нейронных сетей.

В настоящей работе развивается метод самоорганизующихся нейронных сетей Кохонена, основными отличиями которого от перечисленных методов являются: универсальность относительно размерности анализируемых данных, встроенная возможность распараллеливания расчетов; кластеризация данных, наглядная визуализация образа анализируемых данных.

Большой вклад в развитие и применение нейронных сетей в разных областях науки и деятельности человека в нашей стране внесли Галушкин А. И. (теория и практическое применение нейронных сетей, системы распознавания образов), Горбань А. Н. (нейросетевые экспертные системы), Терехов С. А. (моделирование сложных инженерных систем с помощью нейронных сетей, машинное обучение, анализ данных), Шумский С. А. (теория и практическое применение нейронных сетей) и другие.

Предлагаемая в диссертации модель нейронной сети, основанная на методе самоорганизующихся карт Кохонена (СОКК), позволяет решить такие известные проблемы этих сетей, как "граничный эффект" и наличие "мертвых"

нейронов. За счет повышения точности и качества анализа данных новая модель нейронной сети позволяет повысить эффективность принятия решений в задачах анализа данных с помощью систем поддержки принятия решений (СППР).

Объект исследования

Самоорганизующаяся нейронная сеть Кохонена как эффективное средство кластерного анализа данных в системах поддержки принятия решений.

Цель диссертационной работы

Повышение эффективности систем поддержки принятия решений за счет применения усовершенствованной модели самоорганизующейся нейронной сети Кохонена.

Для достижения поставленной цели были решены следующие научные и практические задачи:

исследование алгоритма работы классической модели самоорганизующейся нейронной сети Кохонена, его недостатков и существующих способов их устранения;

разработка и исследование усовершенствованной модели нейронной сети Кохонена для устранения недостатков сетей этого типа: граничного эффекта и появления "мертвых" нейронов;

повышение алгоритмической эффективности применения самоорганизующихся нейронных сетей при решении задач анализа данных в системах поддержки принятия решений;

обеспечение встраиваемости полученных программно-алгоритмических результатов в различные системы поддержки принятия решений.

Методы исследования

При решении задач, поставленных в работе, были использованы методы теории нейронных сетей. Для анализа качества работы нейронных сетей использовался критерий энтропии, используемый в теории информации. Для программной реализации использованы методы структурного и объектно-ориентированного анализа и программирования.

Научная новизна работы заключается в следующих положениях:

разработана и исследована усовершенствованная модель нейронной сети Кохонена, которая, устраняет недостатки нейронных сетей этого типа, а также повышает точность и качество аппроксимации анализируемых данных;

предложен новый метод установки связей между нейронами в решетке сети разработанной модели, который упрощает алгоритм установления размеров топологических областей соседства;

определена и доказана эффективность применения усовершенствованной модели сети Кохонена в задачах кластерного анализа.

Практическая ценность работы заключается в:

разработке методики анализа данных с помощью предложенной модели нейронной сети Кохонена;

разработке программного решения в виде динамической библиотеки функций с открытым интерфейсом, которая обеспечивает возможность встраивания и использования разработанной модели нейронной сети в системах поддержки принятия решений.

Достоверность положений

Достоверность научных положений настоящей работы подтверждена сравнением оценок точности и качества аппроксимации данных нейронными сетями разработанной и классической моделей Кохонена. В качестве критерия точности использовался критерий ошибки квантования из теории нейронных сетей, а в качестве критерия качества - критерий энтропии. Достоверность полученных результатов подтверждается также итогами применения разработанных алгоритмов на практике.

Апробация работы

Основные положения диссертационной работы докладывались и обсуждались на расширенных заседаниях кафедры "Теоретической механики" и научных семинарах в ГОУ ВПО МГТУ "Станкин", а также - международных и всероссийских научно-технических конференциях: VIII-ая научная конференция ГОУ ВПО МГТУ "Станкин" и "Учебно-научного центра математического

моделирования ГОУ ВПО МГТУ "Станкин" - ИММ РАН", Москва, 2005 г.; Х-я Международная открытая научная конференция "Современные проблемы информатизации в технике и технологиях" (Воронеж, Воронежский государственный технический университет, 2005 г.); VIII Международная научно-техническая конференция "Информационно-вычислительные технологии и их приложения" (Пенза, МНИЦ ПГСХА, 2008 г.); Научно-методическая конференция "Машиностроение - традиции и инновации" (Москва, ГОУ ВПО МГТУ "Станкин", 2008 г.).

Реализация работы

Разработанное в настоящей диссертационной работе программное обеспечение (ПО), реализующее работу новой модели нейронной сети Кохонена, применялось для решения двух разнородных практических задач:

разработанное ПО внедрено как модуль в систему менеджмента качества автоматизированной информационной системы управления производством шовного хирургического материала "ИГЛА" на ОАО "Московский завод координатно-расточных станков" (ОАО "МЗКРС") с целью выявления причин и скрытых закономерностей в появлении высокого процента брака готовой продукции. Имеется акт о внедрении в промышленную эксплуатацию;

разработанное ПО использовалось на кафедре "Теоретическая механика" ГОУ ВПО МГТУ "Станкин" для анализа результатов моделирования работы конических зубчатых передач с круговыми зубьями в программном комплексе (ПК) "ЭКСПЕРТ", разработанном на кафедре, с целью выявления характеристик этих передач, влияющих на необходимость изготовления нестандартного режущего инструмента.

Публикации. По теме диссертационной работы опубликовано 7 научных работ, включая 2 научные работы в рецензируемых журналах из Перечня ВАК РФ, а также тезисы докладов, подготовленных для международных и региональных научно-технических конференций.

Структура и объем. Диссертация состоит из введения, 4 глав, основных результатов и выводов, списка используемой литературы из 68 наименований, изложена на 145 страницах машинописного текста, включая 54 рисунка и 11 таблиц.

Похожие диссертации на Совершенствование самоорганизующихся нейронных сетей Кохонена для систем поддержки принятия решений