Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Качественные и численные методы решения задачи оптимального управления с фазовыми ограничениями на примере управления локомотивом Данг Тхи Май

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Данг Тхи Май. Качественные и численные методы решения задачи оптимального управления с фазовыми ограничениями на примере управления локомотивом : диссертация ... кандидата физико-математических наук : 05.13.01 / Данг Тхи Май; [Место защиты: Вычисл. центр РАН].- Москва, 2012.- 110 с.: ил. РГБ ОД, 61 12-1/806

Введение к работе

Актуальность темы диссертации

Задачи оптимального управления с фазовыми и смешанными ограничениями наиболее адекватно отражают свойства управляемого объекта. Большую роль при проектировании систем управления играют программные траектории. Из известных методов решения указанных задач являются: прямые методы, метод вариации фазовых переменных, метод штрафных функций, метод функций Лагранжа, принцип максимума. В вычислительном плане наиболее точные результаты получаются с использованием принципа максимума. Основы теории оптимального управления были заложены в работах Л.С. Понтрягина, Н.Н. Красовского, В.Г. Болтянского, А.А. Милютина, А.Я. Дубовицкого, Р.В. Гамкрелидзе, Р. Беллмана и других авторов.

Известно, что принцип максимума редуцирует исходную постановку задачи к краевой задаче для системы обыкновенных дифференциальных уравнений. Решение краевых задач связано с выбором начальных значений сопряженных переменных и опирается, в основном, на требования хорошей обусловленности матрицы Якоби [1].

Трудности исследования и численного решения таких задач связаны с алгебраическими ограничениями типа неравенства, а также со структурой сопряженной системы ОДУ. Для задач с фазовыми и нерегулярными смешанными ограничениями правые части сопряженных ОДУ содержат обобщенные функции. Особую трудность при численной реализации представляют траектории, близкие к нерегулярным. В этом случае сопряженные уравнения могут содержать малый параметр при производной, который зависит от времени [2].

Кроме того, одной из основных задач, возникающих при обработке результатов экспериментов, является задача интерполяции и дифференцирования табличных данных. Из-за сложности математических моделей экспериментов процесс точного их восстановления более трудоемок по сравнению с построением модели, близкой по свойствам к модели эксперимента. Для более точного приближения построенной математической модели к эксперименту, помимо информации, полученной в результате эксперимента, используется априорная информация, которая задает дополнительные ограничения на поведение функции.

Известно, что наилучшее приближение для функций класса Ж^[а, b] (если /ef22[a,5] то / интегрируемых в квадрате и /' - абсолютно непрерывна) с

точки зрения функционала энергии вида Us\x))2dx дают кубические сплайны.

То есть, кубический сплайн обладает минимальной кривизной среди всех интерполяционных функционалов, построенных по заданным точкам. Наиболее

простым кубическим сплайном является интерполяционный кубический сплайн, методы вычисления которого являются базовыми для вычисления других видов сплайнов [3].

Однако область применения таких сплайнов ограничена таблицами, содержащими точные значения интерполируемой функции. То есть при использовании этого типа сплайнов мы должны быть уверены, что экспериментальные данные не содержат ошибок, которые могут быть внесены, например, регистрирующей аппаратурой. В случае наличия таких ошибок выполнение условий интерполяции приводит к искажению исходной функции, более того, при дифференцировании построенного сплайна его производная будет содержать высокочастотные «шумовые» осцилляции большой амплитуды, обусловленные некорректной операцией дифференцирования. Чтобы избежать такой ситуации используются сглаживающие кубические сплайны.

В связи с указанными обстоятельствами возникает, с одной стороны, необходимость создания новых математических моделей, описывающих динамические процессы, с другой стороны, необходимость разработки методов, позволяющих оптимизировать и оценивать эффективность функционирования динамических систем. Так, в связи с проектированием и внедрением скоростных и высокоскоростных составов актуальными задачами являются изучение качественного поведения и устойчивости математических динамических моделей с учетом различных типов возмущений.

Предмет исследования - разработка эффективных методов и алгоритмов решения задач оптимального управления и задач аппроксимации профиля поверхности по которой движется транспорт.

Цель и задачи исследования. Целью работы является разработка и исследование эффективных качественных и численных методов решения задач оптимального управления с фазовыми и смешанными ограничениями. Методы исследования настоящей работы опираются на схему Дубовицкого-Милютина; включая разработку и анализ алгоритмов а также программную реализацию предложенных алгоритмов, включая исследование и разработка методов и алгоритмов построения кубических сплайнов, а также Чебышевского сплайна.

Теоретическая и методологическая основа диссертации. Теоретическую и методологическую основу диссертации составляют труды российских и зарубежных специалистов по методам оптимального управления. Основным инструментом для решения поставленных задач является принцип максимума (схема Дубовицкого-Милютина) и методы исследования сплайн-функций.

Научная новизна результатов диссертационной работы состоит в исследовании методов решения задачи оптимального управления со смешанными ограничениями, сводящейся к последовательному решению

линейной задачи оптимального управления; проведении сравнительного анализа эффективности методов кубического и Чебышевского сплайнов. Во всех случаях проводились численные эксперименты по выяснению границ применимости предложенных методов.

Практическая ценность диссертации.

Разработанные методы, алгоритмы и программное обеспечение позволили решить три важные для практики задачи:

1. задача аппроксимации функции;

  1. задача оптимального управления движением поезда с учетом рельефа местности;

  2. задача наилучшего прогноза элементов матрицы Якоби а также задача корректного численного дифференцирования.

Качественное исследование и вычислительные эксперименты

подтверждают эффективность предложенной методики при решении

практических задач оптимального управления с фазовыми и смешанными
ограничениями.

Апробация результатов исследования. Результаты диссертации докладывались и обсуждались в ВЦ РАН, ИСА РАН, ЦЭМИ РАН, ИЛУ РАН, МФТИ.

Достоверность результатов, полученных в диссертационной работе, подтверждается использованием математических моделей управления движением поезда, корректных алгоритмов аппроксимации и прогноза, методов статистической обработки информации и теории оптимального управления движением, а также проведенным математическим моделированием процессов оптимальной обработки результатов измерений.

Публикации. Основные результаты исследования по теме диссертации опубликованы 4-х работах общим объемом 2,2 п.л., в том числе 3 работы в журналах и изданиях из перечня, рекомендованного ВАК РФ, объемом 1,5 п.л.

Структура и объем работы.

Похожие диссертации на Качественные и численные методы решения задачи оптимального управления с фазовыми ограничениями на примере управления локомотивом