Содержание к диссертации
* ВВЕДЕНИЕ 4
1 ИССЛЕДОВАНИЕ ВЛИЯНИЯ ИНСТРУМЕНТАЛЬНЫХ
ОШИБОК ДАТЧИКОВ ПЕРВИЧНОЙ ИНФОРМАЦИИ НА ТОЧНОСТЬ
ИНС 13
1.1 Структура погрешностей инерциальных навигационных
систем 13
-
Характеристики первичной информации БЧЭ 17
-
Алгоритмы БИНС 18
-
Уравнения ошибок БИНС 23
-
Собственные и инструментальные погрешности БИНС 25
-
Постановка задачи оценки параметров БЧЭ, как необходимая процедура производственного процесса и начальной подготовки БИНС 27
2 ОБОСНОВАНИЕ МОДЕЛЕЙ ОШИБОК ДАТЧИКОВ
ПЕРВИЧНОЙ ИНФОРМАЦИИ 30
2.1 Погрешности акселерометра 30
-
Погрешности датчиков угловой скорости 32
-
Обработка результатов измерений выходных сигналов ДПИ 42
3 ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ОШИБОК БЛОКА
ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ 50
3.1 Формирование требуемых положений БЧЭ в пространстве 50
-
Описание сигналов гироскопов для заданных поворотов БЧЭ 55
-
Формирование дополнительных положений БЧЭ для оценки влияния ускорения на дрейф гироскопа 60
-
Получение требуемых параметров погрешностей датчиков из
^ накопленных измерений 63
4 ОЦЕНКА ПАРАМЕТРОВ ПОГРЕШНОСТЕЙ ГИРОСКОПОВ В
ПРОЦЕССЕ НАЧАЛЬНОЙ ПОДГОТОВКИ ИНС 66
4.1 Анализ различных подходов к описанию модели дрейфов
гироскопов 66
-
Методы оптимальной фильтрации 68
-
Исследование поведения ОФК при оценке случайного дрейфа гироскопа 71
-
Предложения по организации процесса начальной подготовки ИНС 86
ВЫВОДЫ 94
ЛИТЕРАТУРА 97
СОКРАЩЕНИЯ 102
Ч>
*
Введение к работе
Актуальность проблемы. Повышение требований по точности и надежности к системам управления летательных аппаратов (ЛА) вызвало необходимость установки на борт подвижных объектов инерциальной навигационной системы (ИНС). В настоящее время ни один летательный аппарат не разрабатывается без учета применения ИНС, несмотря на наличие большого спектра различных приборов на борту: системы радионавигации, радиовысотомеры, приемник спутниковой навигации и т.д. Основными достоинствами ИНС по сравнению с другими информационными системами, являются: автономность работы; помехозащищенность от внешних факторов; всепогодность и возможность применения в любое время суток; относительно небольшой вес и габариты; высокая информативность.
Высокая информативность ИНС позволяет обеспечивать потребителю практически весь набор требуемых параметров для задач управления подвижными объектами.
Являясь основным источником информации о движении ЛА, ИНС должна обеспечить требуемую точность счисления координат и ориентации положения объектов в пространстве.
Точностные параметры инерциальной навигационной системы в основном зависят от погрешностей датчиков первичной информации: гироскопов и акселерометров. В настоящее время разработан широкий спектр инерциальных датчиков требуемого класса точности, позволяющий обеспечить разработку ИНС. Следует отметить, что чем точнее инерциальная система, тем более точные датчики необходимо применять и тем более высокая стоимость аппаратуры, большие вес и габариты. Поэтому очень актуальным становится вопрос алгоритмического учета погрешностей датчиков в системе и снижения требова- ний к их точностным параметрам. Разработаны различные схемы достижения требуемой точности датчиков: калибровка блока чувствительных элементов в процессе производства; предполетная оценка текущих параметров погрешностей датчиков в процессе начальной подготовки ИНС; комплексирование ИНС с другими источниками информации с возможностью оценки параметров погрешности.
Решению данной проблемы посвящены многочисленные исследования ученых и инженеров в нашей стране и за рубежом.
Вопросами достижения требуемой точности ИНС методами компенсации погрешностей ДПИ занимается большое количество предприятий и организаций в разных странах. Прежде всего это корпорации стран: США, Франции, Германии, Англии - HONEYWELL, LITTON, ROCKWELL, SAGEM, KEARFOTT, LITEF и т.д.
В России много лет этими вопросами занимаются предприятия: ФГУП Раменское приборостроительное конструкторское бюро; Пермская научно-производственная приборостроительная компания; ЦНИИ «Дельфин», г. Москва; ОАО «Раменский приборостроительный завод»; ГУП ВНИИ «Сигнал», г. Ковров; НИИПМ им. академика В.И. Кузнецова, г. Москва; Гос.НИИП, г. Москва; МИЭА г. Москва; ЦНИИ «Электроприбор», г. Санкт-Петербург и др.
Большое внимание уделяют этой проблеме ученые высших учебных заведений: Московского авиационного института; Московского государственного технического университета им. Н.Э. Баумана и др.
Основные проблемы повышения точности ИНС широко освещены в технической литературе и научных статьях. 3 работах ряда авторов рассматриваются вопросы калибровки датчиков первичной информации ИНС в процессе их изготовления.
В работе [1] дается методика определения основных параметров ДНГ путем съема информации в 16ти положениях осей корпуса датчика относительно земной системы координат. При этом в 4-х положениях задают ориентацию вектора кинетического момента относительно плоскости горизонта. В каждом фиксированном положении вектора кинетического момента задается еще 4 положения путем разворота корпуса относительно оси вращения ротора.
После съема информации с датчика по двум осям и преобразования полученной информации с помощью специального алгоритма получают следующие составляющие собственной скорости прецессии (ССП): независящие от ускорения свободного падения; составляющие ССП от осевых смещений центра масс; квадратурные составляющие.
При этом требуемая точность выставки корпуса прибора относительно горизонта и в азимуте составляет не хуже 2 угл. мин. Необходимость обеспечения заданной точности ориентации стенда относительно меридиана и вертикали места требует применения прецизионного оборудования и организации специального рабочего места. Организация работ по проведению калибровки по данной методике требует больших капитальных затрат и подготовки высококвалифицированного персонала.
В работе [2] рассмотрен вариант создания прецизионного основания с применением волоконно-оптического измерителя угловой скорости. Как указывается в статье, в современной технике достаточно остро стоит вопрос о создании прецизионных управляемых оснований для контроля датчиков угловой скорости по их основной характеристике - масштабному коэффициенту. Для этого необходимо с высокой точностью и стабильностью задавать угловую скорость вращения основания. Применяемые в настоящее время в отечественном приборостроении испытательные стенды представляют собой механические системы, включающие приводной двигатель и редуктор. Как показали исследования авторов, возможно дальнейшее развитие направления создания стендов для контроля измерителей углоьых скоростей различных принципов действия, построенных по принципу одноосного гиростабилизатора, работающего в режиме программного разворота.
Предлагаемое оборудование в виде одноосного гиростабилизатора является сложным агрегатом, требующим специального обслуживания и организации дорогостоящего рабочего места. Само проектирование подобного стенда является сложной технической задачей.
При решении вопросов повышения точности ИНС в процессе начальной подготовке путем оценки остаточного значения дрейфа гироскопов возникают проблемы по выбору математической модели случайной составляющей дрейфа. Вследствие большого уровня возмущений, действующих на инерциальную систему в процессе начальной подготовки и ограничения по времени подготовки очень важен правильный выбор эффективной модели собственной скорости прецессии гироскопов. В работах ряда авторов рассматриваются вопросы калибровки датчиков первичной информации ИНС в процессе их изготовления.
При оценке погрешностей платформенных инерциальных систем в работе [3] рассматриваются флюктуационные составляющие ухода гироскопа, описываемые Марковским процессом первого порядка с корреляционной функцией вида: где постоянная времени ц. = 8 часов. При этом сделано замечание, что учет случайной составляющей приводит к изменению погрешностей ИНС не более чем на несколько процентов. Данное замечание говорит о неэффективности примененной модели дрейфа гироскопов.
В работе [2] рассматривается вопрос по использованию волоконно-оптического гироскопа, при этом Дрейф описывается выражением: о)(р)п=со0+сослуч, где: соо - систематическая составляющая дрейфа; сослуч - случайная составляющая описывается суммой гармонических сигналов.
Такой подход позволяет рассчитать передаточные звенья контура управления, но при этом можно получить излишне затянутые процессы формирования оценок дрейфа.
В работе [1] случайная составляющая собственной скорости прецессии (ССП) описывается в виде суммы двух случайных процессов: Марковской составляющей, реализованной в виде белого шума наблюдения, пропущенного через формирующий фильтр, и случайной составляющей в виде белого шума измерения. Ставится задача оценки параметров формирующего фильтра и интенсивности шума наблюдения. При этом в основном оценивается процесс выхода гироскопа на рабочий режим и не рассматриваются составляющие случайного дрейфа, действующие на больших интервалах наблюдения. После завершения переходных процессов в гироскопе, в основном, учитывается только систематическая составляющая.
В данной работе также преложено рассматривать ССП в виде суммы случайных процессов, весовые коэффициенты, при которых имеют случайную зависимость от времени и скачком изменяют свои значения, следует отметить, что при таком описании ССП существенно усложняется процедура оценки случайного дрейфа.
В работе [4] рассмотрен алгоритм управления плоского гироскопического маятника, при этом решается вопрос по формированию оптимального управления U(t), которое бы удерживало систему вблизи состояния нулевого углового отклонения. Возмущающий момент задан в виде гауссова случайного процесса типа белого шума с нулевым средним значением. В формируемом векторе измерения также присутствует дополнительная шумовая составляющая в виде белого шума некоррелированного с шумом наблюдения. Начальные условия задаются в виде исходного углового рассогласования маятника. Получаемая в итоге система уравнений обеспечивает оценку только составляющих по угловому рассогласованию и не позволяет сделать оценку величины случайного дрейфа гироскопа. При условии длительной работы маятниковой системы, бы- ло бы полезно получить дополнительную информацию по составляющей случайного дрейфа и учитывать ее при возмущенном движении объекта. Введение подобной оценки существенно позволит повысить точность системы в целом.
В работе [5] подробно рассматриваются вопросы применения оптимального фильтра Калмана для идентификации ошибок инерциальной системы навигации. При этом рассматриваются разомкнутые схемы и замкнутые, где оценки наблюдаемых координат с фильтра поступают не на выход ИНС, а используются для образования дополнительных связей в самой схеме ИНС. Эти корректирующие сигналы могут подаваться на вход первого интегратора, на моментные датчики гироплатформы и т. д. В работе подробно рассматривается вопрос использования корректирующей информации от других систем (ДИСС, астрокорректор и т.д.).
Выражения для дрейфов гироскопов и смещений нулей акселерометров задаются в виде Марковского процесса с заданной интенсивностью и постоянным периодом затухания. Дополнительно присутствует белый шум в векторе измерения.
Основным результатом работы фильтра являются оценки выходных параметров ИНС координат и скорости, при этом не делается попытка оценки инструментальных ошибок ДПИ для повышения точности системы при работе без средств коррекции.
Развитие новых принципов и методов оценки случайных процессов нашло свое отражение в трудах [6], [7]
В диссертации использовались результаты работы авторов [6] по оценке предсказания фазового вектора непрерывных линейных систем. Метод теории рекуррентного оценивания фазового вектора, называемый предсказанием, состоит в получении оценки состояния системы на время t, превосходящее время Т < t. Предлагаемые в статье методы очень интересны при формировании алгоритма компенсации погрешностей ИНС на участке автономной работы при наличии достаточного времени начальной подготовки.
В работе [7] рассмотрен вариант построения алгоритма линейного оптимального фильтра, обеспечивающего решение задачи оценивания в случае, когда фигурирующие в системе шумы представляют собой случайные процессы, отличные от белого шума. В нем не используются формирующие фильтры, а также отсутствует необходимость решать нелинейное векторно-матричное дифференциальное уравнение для определения корреляционной матрицы ошибок работы фильтра. В диссертации автором сделана попытка применения данного метода, но не удалось получить желаемых оценок. В случае ограничения вычислительных мощностей данная методика несомненно дает существенный выигрыш по объему вычислений дрейфа гироскопов.
К настоящему времени существует большая наработка, как в теоретическом, так и в практическом плане, но в основном в каждом случае решена конкретная проблема оценки точностных параметров ИНС.
Цель работы. Целью диссертационной работы является разработка методов, алгоритмов и программного обеспечения повышения точности датчиков, как задачи стохастического оценивания вектора состояния параметров погрешности приборов.
Задачи диссертационной работы.
Разработка математической модели вектора состояния параметров погрешностей ИНС.
Разработка алгоритмов калибровки ДПИ для автоматизированного рабочего места регулировки гироскопов.
Разработка методов, алгоритмов и программного обеспечения процесса оценки текущих значений параметров погрешностей ИНС в процессе начальной подготовки.
Методы исследования. При выполнении диссертационной работы использовались методы теории управления в пространстве состояний, теория матриц, включая теорию матричных уразнении, и методы теорий случайных процессов.
Связь с планом. Исследования по теме диссертационной работы проводились в соответствии с планом работы предприятия ОАО АНПП «ТЕМП-АВИА» г. Арзамас в рамках договорной тематики с ГНПЦ «ЗВЕЗДА-СТРЕЛА» г. Королев.
Научная новизна. В диссертационной работе получены следующие научные результаты: разработаны методы и алгоритмы калибровки БИНС, не требующие сложного технологического оборудования; на основе реальных записей сигналов гироскопов: РВГ, ДНГ, ВОГ, ЛГ построена обобщенная стохастическая модель случайного дрейфа гироскопов; разработаны методы и алгоритмы предполетной калибровки ИНС в процессе начальной подготовки, в условиях изменяющегося дрейфа гироскопа; проведена оценка скорости изменения дрейфа гироскопа для прогнозирования изменения дрейфа в автономном полете; на базе полученных алгоритмов разработан программный комплекс расчета параметров погрешностей ИНС в процессе заводской калибровки и начальной подготовки ИНС. Проведена апробация алгоритма идентификации параметров случайного дрейфа для различных типов гироскопов: РВГ, ДНГ, ВОГ, ЛГ.
Практическая ценность. Полученные результаты могут найти широкое применение в практике проектирования сложных инерциальных систем при условии обеспечения оптимального соотношения сложности решаемой задачи и стоимости системы. Результаты диссертационной работы внедрены ОАО АНПП «ТЕМП-АВИА» при проектировании инерциальных систем управления летательных аппаратов, что подтверждено соответствующими документами.
Апробация полученных результатов. Основные положения диссертации докладывались на 4 и 5 конференции молодых ученых "Навигация и управление движением" г. Санкт Петербург ЦНИИ "Электроприбор" 2002г., 2003г.
Публикации. Основное содержание диссертации отражено в 9 печатных работах [38-45].
Личный вклад диссертанта в совместных работах является вывод результатов, разработка алгоритмов и программного обеспечения. П.В. Пакшину, как научному руководителю, принадлежат постановка задач и формулировка общего подхода к решению.
Структура и объем диссертации. Основной текст диссертации состоит из введения, четырех глав, выводов, списка литературы, содержащего 45 наименований литературных источников, содержит 57 рисунков и занимает 102 страницы машинописного текста.
На защиту выносятся: метод и алгоритм калибровки параметров погрешностей инерци-альной навигационной системы в процессе производства, не требующие применения сложного технологического оборудования. обобщенная стохастическая модель дрейфа гироскопов, полученная на основе обработки сигналов разных типов гироскопов: РВГ, ДНГ, ВОГ, ЛГ. метод и алгоритм оценки параметров погрешностей гироскопов в процессе подготовки ИНС к автономной работе, в условиях изменяющегося дрейфа. алгоритм компенсации дрейфа гироскопа в автономном полете с учетом использования оценки скорости изменения дрейфа.