Введение к работе
Актуальность. Современные тенденции развития строительного материаловедения связаны с необходимостью разработки новых ресурсо- и энергосберегающих технологий получения композиционных материалов, в том числе цементных бетонов, с повышенными эксплуатационными характеристиками и долговечностью. Одним из решений данной проблемы может быть оптимизация свойств композитов путем управления процессами их структурообразования за счет высокоактивных микро- и наномодификаторов.
К наиболее распространенным способам синтеза нанодисперсных добавок, предлагаемых в настоящее время, относятся технологии, для которых характерно применение дорогостоящего и энергоемкого оборудования, повышенных давлений и температур, плазмы и дугового разряда, а также токсичных реактивов с многостадийной химической очисткой; что приводит к значительному увеличению стоимости нанотехнологической продукции и препятствует ее широкомасштабному внедрению в строительную отрасль.
В этой связи, актуальным и перспективным научно-техническим направлением является изыскание доступных и экологически безопасных способов получения эффективных наномодификаторов структуры и свойств композиционных материалов.
Диссертационная работа выполнена в рамках: фундаментальной НИР по заданию Министерства образования и науки РФ 7.1429.2011 «Развитие теории синтеза и модифицирования наноструктурированных строительных композиционных материалов с разработкой методов оптимизации несущих и ограждающих конструкций на их основе»; мероприятия 1.4.1 ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009-2013 гг. по направлению «Энергоэффективные и ресурсосберегающие строительные технологии, материалы и конструкции»; Президентской программы подготовки управленческих кадров по направлению «Менеджмент в сфере инноваций»; программы «У.М.Н.И.К.-2010» при поддержке Фонда содействия развитию малых форм предприятий в научно-технической сфере.
Цель работы. Повышение эффективности мелкозернистого бетона (МЗБ) за счет применения углерод-кремнеземистого наномодификатора (УКНМ), получаемого ультразвуковым диспергированием продукта совместного помола отсевов дробления шунгитосодержащих пород и анионного поверхностно-активного вещества нафталинформальдегидного типа (а-ПАВ НФТ).
Для достижения поставленной цели решались следующие задачи:
изучение состава, свойств и микроструктуры отсевов дробления шунгитосодержащих пород для их использования в качестве основного компонента УКНМ;
разработка оптимальных параметров синтеза углерод-кремнеземистого наномодификатора, исследование дисперсности, устойчивости, морфологии и состава его частиц;
изучение влияния УКНМ на физико-механические показатели цементов с последующей оптимизацией состава и исследованием структурообразования и свойств мелкозернистого бетона;
технико-экономическое обоснование применения наномодификатора в технологии производства мелкозернистого бетона и изделий на его основе;
подготовка нормативных документов для реализации теоретических и экспериментальных исследований,
промышленная апробация результатов исследований.
Научная новизна. Предложены принципы повышения эффективности мелкозернистого бетона для мелкоштучных изделий, заключающиеся в использовании углерод-кремнеземистого наномодификатора, полученного способом ультразвукового диспергирования в водной среде продукта совместного помола отсевов дробления шунгитосодержащих пород и анионного ПАВ нафталинформальдегид-ного типа. Разработанный наномодификатор оказывает направленное воздействие на формирование структуры бетона за счет дополнительного образования в цементной матрице низкоосновных гидросиликатокальциевых фаз, способствующих перераспределению пор бетона по размерам в сторону уменьшения объемной доли седиментационных и капиллярных макропор размером от 0,1 до 100 мкм при снижении их среднего диаметра от 0,39 до 0,19 мкм, т.е. в 2 раза, что приводит к существенному повышению физико-механических характеристик МЗБ.
Предложен механизм влияния УКНМ на процессы структурообразования цементного камня, заключающийся в ускорении гидратации клинкерных минералов при интенсивном выделении портландита в ранний гидратационный период, что сопровождается сокращением сроков схватывания цементного теста. В последующие стадии твердения концентрация Са(ОН)2 снижается за счет связывания его активным нанокремнеземистым компонентом добавки в дополнительное количество низкоосновных гидросиликатов кальция.
Установлены оптимальные параметры ультразвукового диспергирования шунгитосодержащих микрочастиц, способствующего разделению их наноугле-родной и кремнеземистой составляющих в водной среде в присутствии а-ПАВ НФТ. Кремнеземистая фаза, отделенная от углеродной, под воздействием ультразвука подвергается эрозии с образованием наноразмерных частиц с аморфизиро-ванным поверхностным слоем толщиной 15-20 нм. В свою очередь молекулы а-ПАВ НФТ, адсорбируясь своей неполярной частью на активных центрах высвобождаемых углеродных наноструктур, ориентированы к отрицательно заряженным наночастицам Si02 одноименным зарядом, что препятствует обратной агрегации разделенных фаз.
Показан характер зависимости физико-технических характеристик мелкозернистого бетона от возраста наномодификатора и водоцементного отношения. Доказано, что введение УКНМ в возрасте от 1 до 90 суток приводит к ускорению набора прочности бетона в ранние (1-3 суток) и поздние сроки твердения, увеличению модуля упругости, снижению усадки, истираемости и водопоглощения, повышению морозостойкости, коррозионной стойкости в агрессивных кислых средах.
Достоверность научных результатов и выводов, полученных в диссертационной работе, обеспечена: корректностью постановки задач и принятых допущений, соответствующих общим положениям строительного материаловедения; проведением исследований в аккредитованных научно-исследовательских лабораториях с использованием современных высокоточных приборов, в том числе входящих в государственный реестр средств измерений, и стандартного поверенного оборудования и приспособлений; управлением работой приборов, регистрацией и обработкой информации современными компьютерными программами; достаточным количеством опытных данных, обеспечивающих адекватность и воспроизводимость экспериментов; статистической обработкой полученных результатов на персональной электронно-вычислительной машине.
Практическая значимость. Разработан углерод-кремнеземистый наномодификатор, позволяющий при оптимальном содержании ускорить набор прочности
мелкозернистого бетона в ранние сроки твердения (1-3 суток) и повысить его прочностные показатели в проектном возрасте: на сжатие в 1,5-2 раза, изгиб в 1,6-4 раза; увеличить призменную прочность и модуль упругости бетона как при статическом, так и динамическом видах нагружения; снизить усадку на 30-50 %, истираемость на 50-70 % и водопоглощение в 1,4-2,1 раза; повысить марку по морозостойкости более чем в 2 раза; снизить расход цемента на 10-20 % без потери прочности; сократить продолжительность ТВО или уменьшить температуру изотермической выдержки до 40-60 С при обеспечении прочности, достигающей 50-70 % от 28-суточной.
Предложен оптимальный состав мелкозернистого бетона с содержанием добавки УКНМ, позволяющий получать изделия с проектной прочностью на сжатие 46-57 МПа, изгиб 4,5-8,8 МПа; истираемостью 0,08-0,14 г/см2; водопоглощением 1,8-2,3 %; морозостойкостью более F200.
Разработана технология изготовления мелкоштучных вибропрессованных изделий из мелкозернистого бетона с УКНМ на линии типа «Компакта» (комплекса современного автоматизированного оборудования для выпуска тротуарной и облицовочной плитки, бордюрного камня, стеновых блоков).
Внедрение результатов исследований. Апробация полученных результатов в промышленных условиях осуществлена на предприятиях ООО «Стройдеталь и К» (Брянск), ООО «Фокинский завод ЖБИ» (Фокино, Брянская обл.), ООО «МИП «На-нокомпозит-БГИТА» (Брянск). Из бетонов с применением разработанного наномо-дификатора выпущены опытно-промышленные партии тротуарной плитки, бордюрного камня, колонн и ригелей на ООО «Стройдеталь и К». На ООО «Фокинский завод ЖБИ» выпущена опытно-промышленная партия стеновых блоков с УКНМ.
Для широкомасштабного внедрения результатов исследований разработаны следующие нормативные документы; ТУ 5745-002-65808240-2012 «Углерод-кремнеземистый наномодификатор для бетонов»; ТУ 5741-003-14339618-2010 «Изделия стеновые из бетонов, модифицированных нанодисперсными добавками. Камни и плитка облицовочная».
Теоретические положения диссертационной работы, результаты экспериментальных исследований и промышленного внедрения используются в учебном процессе при подготовке инженеров по направлению 270800 «Строительство» профилям: «Производство строительных материалов, изделий и конструкций», «Городское строительство и хозяйство», «Промышленное и гражданское строительство».
Апробация работы. Основные положения диссертационной были представлены: на V Международной научно-технической конференции «Надежность и долговечность строительных материалов, конструкций и оснований фундаментов» (Волгоград, 2009); 67-й Всероссийской научно-технической конференции по итогам НИР 2009 года (Самара, 2010); Международной научно-практической конференции «Научные исследования, наносистемы и ресурсосберегающие технологии в промышленности строительных материалов» (Белгород, 2010); Международной научно-практической конференции «Достижения молодых ученых в развитии инновационных процессов в экономике, науке, образовании» (Брянск, 2010); Международном семинаре-конкурсе молодых ученых и аспирантов, работающих в области вяжущих веществ, бетонов и сухих смесей (Москва, 2010); Международной научно-практической конференции «Композиционные строительные материалы. Теория и практика» (Пенза, 2011); VII Международной научно-практической конференции «Новости передовой науки» (Болгария, 2011); XII Международной научно-практической конференции «Экологически безопасные нанотехнологии в промышленности» (Казань, 2011).
Углерод-кремнеземистый наномодификатор и образцы бетона на его основе были экспонированы на выставках: «Перспективы развития и сотрудничества» в рамках второго славянского международного экономического форума (Брянск, 2010); «Дни научно-технического и инновационного сотрудничества приграничных регионов республики Беларусь и Российской Федерации» (Могилев, 2011); «RusnanotechExpo» (Москва, ЦВК «Экспоцентр», 2011); «Open Innovations Expo» в рамках Московского международного форума инновационного развития (Москва, ЦВК «Экспоцентр», 2012).
Публикации. Результаты исследований, отражающие основные положения диссертационной работы, изложены в 20 научных публикациях, в том числе в 8 статьях в центральных рецензируемых изданиях, рекомендованных ВАК РФ. Получен патент на полезную модель «Энергоэффективная технологическая линия производства нанодисперсной добавки для бетонов». На способ получения добавки подана заявка на изобретение (№ 2012111843, приоритет от 27.03.2012).
Структура диссертации. Диссертация состоит из введения, шести глав, общих выводов, списка использованных источников из 186 наименований и 6 приложений. Работа изложена на 191 странице машинописного текста, включающего 36 таблиц, 48 рисунков и фотографий.