Содержание к диссертации
Введение
Глава 1. Методы оптического НК для количественных оценок поверхностных дефектов и структур металлов 12
1.1. Оптические системы 12
1.2. Погрешности измерений 16
1.3. Погрешности изображения (аберрации) в ОС и их влияние на точность измерений 19
1.4. Качество изображения в ОС 27
1.5. Эталонное и метрологическое обеспечение контроля оптических систем и преобразователей оптического изображения 30
1.6. Оптическая дефектоскопия и дефектометрия 34
1.7. Оптическая структуроскопия 64
1.8. Оптический контроль структуры металла 82
Глава 2. Преобразование и обработка информации в оптическом неразрушающем контроле 91
2.1. Преобразователи оптического изображения (ПОИ) 94
2.2. Преобразование изображений в цифровую форму 109
2.3. Предварительная обработка изображений 114
2.4. Количественная оценка параметров объектов и структур по цифровым изображениям 135
2.5. Программное обеспечение систем анализа изображений 160
Глава 3. Подходы к повышению точности измерений в оптическом неразрушающем контроле 168
3.1. Совершенствование оптических и оптико-электронных компонент систем измерительного оптического контроля для повышения точности измерений 169
3.2. Алгоритмы повышения точности измерений и оценки количественных характеристик в компьютерных системах ОНК 180
3.3. Метрологическое обеспечение средств ОНК 221
Глава 4. Проблема распознавания и повышение надежности контроля в структуроскопии 227
4.1. Выделение признаков изображения 230
4.2. Автоматическая классификация структур 238
4.3. Практические результаты построения автоматических классификаторов 244
Глава 5. Практическое применение разработанных методов повышения точности измерений 251
5.1. Применение портативных компьютерных систем в металлографии 251
5.2. Портативные микроскопы 255
5.3. Программный пакет анализа металлографических изображений SPECTR МЕТ 259
Глава 6. Компьютерные телевизионные системы для контроля внутренних поверхностей и метрологическое обеспечение 285
6.1. Компьютерные телевизионные системы для контроля внутренних поверхностей 285
6.2. Метрологическое обеспечение 297
6.3. Программное обеспечение 298
Глава 7. Применение разработанных аппаратно-программных средств для повышения точности количественных оценок в других методах НК с оптическим наблюдением 302
7.1. Оптические методы и средства в радиографии 302
7.2. Применение компьютерных систем в радиографии 306
7.3. Оптические методы и средства в магнитопорошковом и капиллярном контроле 315
7.4. Применение компьютерных систем в магнитопорошковом и капиллярном контроле 324
Глава 8. Оценка остаточного ресурса как задача распознавания состояния объекта 337
8.1. Структура автоматической системы оценки остаточного ресурса 339
8.2. Пример оценки остаточного ресурса трубопровода питательной воды (реакторное отделение) барабан-сепаратора энергоблока РБМК-1000 с использованием модели пространства состояний объекта с древовидной структурой 340
Заключение 349
Список литературы
- Погрешности изображения (аберрации) в ОС и их влияние на точность измерений
- Количественная оценка параметров объектов и структур по цифровым изображениям
- Алгоритмы повышения точности измерений и оценки количественных характеристик в компьютерных системах ОНК
- Практические результаты построения автоматических классификаторов
Введение к работе
Определение остаточного ресурса, диагностика состояния и продление сроков эксплуатации объектов - важные современные задачи в энергетике, химической промышленности, добыче и переработке нефти и газа, а также других отраслях промышленности РФ и стран СНГ, в которых применяются техногенно-опасные производства. В этих отраслях наблюдается значительный износ оборудования в совокупности с неточными и неполными данными по истории нагрузок, а возможно и перегрузок.
В электроэнергетике износ основных фондов самый большой и приближается к 60%, а на отдельных ТЭС, ГЭС и АЭС, по данным комитета Госдумы по энергетике, износ оборудования приближается к 70%, что соответствует стадии закритического старения. Это недопустимо с точки зрения безопасности эксплуатации и требует масштабных инвестиций для проведения необходимого технического перевооружения и ремонта.
В нефтегазовом комплексе степень износа составляет около 50%; фактическое время эксплуатации отдельных его видов значительно превышает нормативные показатели. В такой ситуации высока вероятность техногенных катастроф.
Степень износа отдельных видов бурового оборудования нефтегазового комплекса достигает 72%, что вызвало, например, снижение на 38% объема буровых работ в России в 2002 года по сравнению с 2001 г. (данные Министерства промышленности, науки и технологий РФ).
Модернизация оборудования протекает довольно медленно. Вместе с тем количество потенциально опасных промышленных объектов постоянно увеличивается, возрастают требования к точности и оперативности прогнозов и оценок состояния.
Важными характеристиками, влияющими на остаточный ресурс, являются параметры структуры металла (например, балл зерна), из которого изготовлен объект. В ходе эксплуатации в металле происходят изменения, связанные с процессами старения, межкристаллитной коррозии, обезуглероживания, с ростом зерна, фазовым наклепом, сфероидизацией перлита и т.п. Эти изменения влияют на эксплуатационную надежность оборудования и могут быть оценены с помощью металлографического анализа, твердометрии, ко-эрцитиметрии.
Технология мониторинга структуры металла включает в себя: определение мест контроля, подготовку шлифов, металлографический анализ средствами микроскопии с записью и компьютерной обработкой изображений микроструктур, наполнение базы данных по микроструктурам металла образцов (электронный атлас) и работу с этой базой.
Обычно анализ микроструктуры проводят в лаборатории на взятых из объекта образцах. В этом случае микрообразцы в зонах элементов контролируемого оборудования (паропроводов, роторов турбин и др.) получают методом электроэрозионной вырезки. Микрообразцы берут из регламентируемых зон оборудования, определенных с учетом расчета напряженного состояния, результатов неразрушающего контроля и опыта контроля повреждений стареющего оборудования.
Классическая технология металлографического анализа с вырезом образца трудоемка, требует больших затрат времени и главное - сама по себе снижает остаточный ресурс объекта, так как фактически вводится лишний дефект. Альтернативный метод реплик является неразрушающим и не снижает остаточный ресурс, но дает малоконтрастное изображение, не позволяющее проводить измерения с высокой точностью из-за трудности выделения объектов.
В связи с этим целесообразно проводить анализ структуры металла непосредственно на поверхности контролируемого объекта с помощью мобильного комплекса для оперативной металлографии. В состав такого комплекса должен входить крепящийся на поверхность объекта контроля переносной микроскоп, оснащенный цифровым фотоаппаратом или видеокамерой, соединенной с переносным компьютером, а также портативное оборудование для подготовки микрошлифов.
Таким образом, назрела объективная необходимость разработки и внедрения современных систем оперативной компьютерной металлографии на базе портативных микроскопов, отвечающих всем требованиям эксплуатации в полевых условиях, позволяющих диагностировать состояние металла с частичным выводом или вообще без вывода объекта контроля (ОК) из эксплуатации. Портативность оборудования и необходимость контроля в полевых условиях требуют применения специальных алгоритмических средств для получения изображений качества, необходимого для достижения высокой точности измерений. Высокая точность получаемых количественных оценок необходима для достижения приемлемой точности прогноза остаточного ресурса. В свою очередь, точное прогнозирование остаточного ресурса промышленного оборудования существенно снижает риск техногенных катастроф.
Проблема обеспечения техногенно-опасных отраслей современными средствами оперативной компьютерной металлографии потребовала решения самостоятельной научно-технической задачи по созданию портативных аппаратно-программных комплексов (АПК) металлографического контроля, созданию методического обеспечения оперативной количественной металлографии и дефектометрии, а также разработки и реализации алгоритмов, повышающих точность измерений. При этом появляется необходимость разработки нового метрологического обеспечения для цифровых систем оптического контроля, учитывающего специфику применения алгоритмов, повышающих точность измерений.
Контроль состояния структуры металла объекта с помощью методов оптической металлографии при определении остаточного ресурса объекта должен использоваться совместно с другими методами НК - рентгенографическим, капиллярным, магнитопорошковым и акустическим. Результаты, полученные разными методами, должны нормироваться (что облегчается применением цифрового представления данных) и затем совместно обрабатываться и интерпретироваться системами оценки остаточного ресурса.
Обеспечение соответствия цены средств контроля российским реалиям - еще одна актуальная задача, решаемая при разработке портативных систем технической диагностики.
В диссертации обобщены результаты теоретических и экспериментальных исследований автора по перечисленным проблемам, выполненных в Отделе оптических и телевизионных систем диагностики ЗАО «НИИИН МНПО «СПЕКТР».
Цель работы - создание портативных АПК для оперативной металлографии непосредственно на объекте без снижения его остаточного ресурса, и по возможности без вывода объекта из эксплуатации; повышение точности измерений геометрических параметров поверхностных дефектов и определения численных характеристик структур металлов для повышения точности определения остаточного ресурса.
Для достижения поставленной цели решены следующие задачи:
1. Разработаны портативные средства металлографической микроскопии для оперативных исследований непосредственно на ОК и на их основе - портативный аппаратно-программный комплекс, позволяющий оперативно проводить полный цикл металлографического контроля.
2. Разработаны автоматизированные процедуры анализа изображений для повышения производительности контроля в полевых условиях.
3. Разработан математический аппарат компенсации искажений изображения для повышения точности измерений. Для решения этой задачи потребовалось построить обобщенную математическую модель цифровой оптико-электронной регистрирующей системы с учетом неоднородности искажений в поле зрения оптического тракта и особенностей металлографических изображений.
4. Создан интерактивный алгоритм классификации изображений структур металлов для оценки количественных параметров структуры методом сравнения со шкалами ГОСТ.
5. Разработаны портативные средства дефектометрии микродефектов поверхности.
6. Внедрен в практику ряд новых портативных цифровых измерительных металлографических систем полного цикла исследований с обеспечением оценки количественных параметров структуры металла и микродефектов в соответствии с ГОСТ.
Научная новизна работы состоит в следующем.
1. Исследовано и проанализировано влияние ЧКХ оптико-электронных трактов на погрешность измерения размеров поверхностных дефектов.
2. Разработаны и реализованы алгоритмы компенсации искажений с учетом их неоднородности в поле зрения оптико-электронных систем цифровой металлографии на основе обобщенной математической модели цифрового оптико-электронного тракта и метода регуляризации Тихонова с автоматизацией выбора параметра регуляризации по минимуму артефактов на динамически синтезируемом тест-объекте.
3. Разработан и реализован интерактивный алгоритм классификации изображений структур металлов для повышения объективности и производительности контроля.
4. Разработана технология автоматизированной оперативной качественной и количественной оценки состояния структуры металла с помощью АПК SPECTR МЕТ с подготовкой данных для дальнейшего анализа при определении остаточного ресурса промышленных объектов.
Диссертационная работа состоит из 8 глав, введения и заключения.
В 1-й главе дан обзор состояния проблемы повышения точности измерений. Дана общая характеристика методов оптического НК для количественных оценок поверхностных дефектов и структур металлов. Выполнен обзор оптических характеристик и особенностей изображений структур и характерных поверхностных дефектов металлов. Представлен обзор приборов оптического контроля, методов измерений размеров поверхностных дефектов и определения количественных характеристик структур металлов. На основании сделанного обзора определяется цель работы, задачи исследований и пути их выполнения. Решению поставленных задач посвящены последующие главы диссертации.
Во 2-й главе рассмотрена общая структура АПК для получения, обработки, анализа и документирования цифровых изображений в оптической дефектометрии и металлографии. Проанализированы искажения, вносимые цифровой частью аппаратно-программных комплексов и приводящие к снижению точности измерений.
Сделан подробный анализ влияния характерных искажений оптических систем, преобразователей оптического изображения в электрический сигнал на точность измерений размеров объекта по его изображению.
Рассмотрены методы количественной оценки параметров структур по цифровым изображениям. Отдельно проанализированы и систематизированы количественные параметры дефектов, определяемые по металлографическим и радиографическим изображениям, а также по изображениям индикаций дефектов в магнитопорошковом и капиллярном контроле.
В 3-й главе рассматриваются подходы к повышению точности измерений в оптическом НК. Выделяются два подхода к решению задачи снижения погрешности измерений в оптическом неразрушающем контроле (ОНК): (1) - совершенствование аппаратной части приборов ОНК и (2) - разработка алгоритмов обработки и восстановления изображений для компенсации искажений, вносимых аппаратной частью. Показано, что именно второй подход приемлем для повышения точности измерений по изображению в системах с портативными оптическими средствами, так как улучшение оптической и оптико-электронной части неизбежно усложняет конструкцию, что снижает надежность и увеличивает габариты оптической части.
Далее рассматривается и анализируется метрологическое обеспечение измерительных систем оптического контроля, соответствующее первому и второму подходам.
Построены и исследованы математические модели реальной и идеальной цифровых изображающих систем, на основе которых с использованием метода регуляризации Тихонова разработаны и реализованы алгоритмы компенсации искажений с учетом их неоднородности в поле зрения оптико-электронных систем цифровой металлографии. Для повышения производительности работы созданных алгоритмов и повышения объективности результатов восстановления изображения разработан метод автоматического выбора параметра регуляризации по минимуму артефактов на динамически синтезируемом тест-объекте, что представляет научную новизну работы. Был успешно решен ряд задач, связанных с применением метода регуляризации Тихонова к восстановлению дискретных изображений, с учетом особенностей изображений металлографии, что также представляет научную новизну в работе. Практическая ценность полученных результатов состоит в снижении погрешности измерений по изображениям, полученным с помощью портативных средств оперативной металлографии, на 6,5%, что приближает портативные средства по возможностям к стационарным.
В 4-й главе рассматривается задача распознавания и повышения надежности контроля в структуроскопии. Проанализированы основные алгоритмы распознавания. Рассмотрены алгоритмы выделения признаков изображения и основные методы идентификации и классификации изображений. Описаны основные шаги разработанного алгоритма построения автоматического классификатора и автоматического распознавания в программе SPECTR МЕТ. Приведены примеры построения и результаты работы автоматических классификаторов.
Разработанный алгоритм распознавания и классификации металлографических структур позволяет повысить надежность контроля, снизив значение субъективного фактора при анализе изображений.
В 5-й главе рассматривается практическое применение разработанных методов повышения точности измерений при количественной оценке структур металлов, в частности, при определении остаточного ресурса промышленных объектов.
Приведено описание созданного при участии автора ряда портативных металлографических микроскопов МПМ, аппаратно-программных комплексов оперативной металлографии - стационарного SPECTR МЕТ и мобильного SPECTR МЕТ М и одноименного программного пакета анализа металлографических изображений и показан опыт их применения. Приводится описание разработанных алгоритмов автоматизированной обработки изображе ний в SPECTR МЕТ: автоматическое выделение информативных частей изображения, алгоритм коррекции пятна повышенной яркости в центре изображения, алгоритм сегментации изображения при измерении размеров объектов хордовым методом, алгоритм прецизионного морфометрического анализа (ПМА) для сегментации изображения.
6-я глава посвящена практическому применению разработанных методов повышения точности измерений в оптико-телевизионных дефекто-метрических системах. Описаны разработанные автором измерительные ви-деоскопические системы DX 3 для оперативного контроля поверхностей различных объектов, обнаружения поверхностных дефектов и измерения их геометрических параметров.
7-я глава посвящена практическому применению разработанных алгоритмов обработки и анализа изображений в радиографии, капиллярном и магнитопорошковом контроле, для расшифровки радиографических снимков и анализа индикаций дефектов соответственно. Рассмотрены особенности наблюдения индикаций люминесцентного капиллярного и магнитопорошко-вого контроля в ультрафиолетовом освещении; яркостные, контрастные и геометрические характеристики и особенности индикаций контрастного и люминесцентного капиллярного и магнитопорошкового контроля. Описываются перспективные разработки Отдела оптических и телевизионных систем диагностики (НИО-7) ЗАО «НИИИН МНПО «СПЕКТР» в данной области: программный инструмент для выделения и оценки размеров индикаций, а также методика сравнительной оценки чувствительности и поведения различных наборов средств капиллярной дефектоскопии на тест-объектах JIS Z 2343-3. Описана перспектива расширения методики на сравнительную оценку чувствительности поведения магнитопорошковых средств на тест-объекте MTU№3.
В 8-й главе рассмотрен подход к применению результатов количественного анализа поверхностных дефектов и структур металлов, полученных при помощи созданных аппаратно-программных комплексов, для решения задач определения остаточного ресурса. Предложена методика построения интерактивных автоматизированных систем оценки остаточного ресурса (АСООР) промышленных объектов.
Математический аппарат, реализованный для распознавания структур в металлографии, после соответствующей модификации и обобщения становится применимым для решения более глобальной задачи - построения АСООР промышленных объектов. При этом решение задачи оценки остаточного ресурса сводится к решению задачи распознавания текущего состояния объекта.
Основные результаты работы докладывались и обсуждались на российских и международных конференциях - с 1-й по 6-ю включительно Международных конференциях «Неразрушающий контроль и техническая диагностики в промышленности» (Москва, 2000-2006 г.г.), 3-й международной конференции "Компьютерные методы и обратные задачи в неразрушающем контроле и диагностике" (Москва, 2002 г.), 15-й Всемирной конференции по неразрушающему контролю (Рим, 2000 г.), 16-й Всемирной конференции по неразрушающему контролю (Монреаль, 2004 г.), 7-й, 8-й и 9-й Европейской конференциях по неразрушающему контролю.
Основные результаты работы опубликованы в журнале «Контроль. Диагностика», монографии и материалах российских и международных конференций.
Погрешности изображения (аберрации) в ОС и их влияние на точность измерений
Погрешности измерений геометрии объекта по его оптическому изображению возникают вследствие погрешностей самих изображений, формируемых оптическими системами.
Реальная оптическая система изображает каждую точку предмета с определенными аберрациями. Гомоцентрический пучок лучей, выходящий из какой-либо точки предмета, после преломления и отражения на поверхности оптической системы становится негомоцентрическим, т. е. не все лучи сходятся в сопряженной точке объекта [2].
Внутри бесконечно малого пространства, окружающего оптическую ось системы, в так называемой параксиальной или гауссовой области, проис ходит идеальное схождение лучей и отсутствуют аберрации. Отрезки s и s , выражающие расстояния от преломляющей (отражающей) поверхности с радиусом кривизны г до точки предмета и ее изображения, и показатели преломления п и п связаны инвариантом преломления Аббе (рис. 1.4) [2]:
С помощью этого соотношения выводятся общие законы изображения, формулы для вычисления линз и основных гауссовых элементов оптических систем [3]. В действительности при конечных значениях угла поля зрения и высот падения лучей на поверхности линз системы возникают различные по характеру аберрации.
Поясняющий рисунок к инварианту преломления Аббе
Принято различать основные аберрации для монохроматического излучения (сферическую аберрацию, кому, астигматизм, кривизну изображения и дисторсию) и сложного по спектральному составу излучения (хроматические аберрации положения и увеличения). Сферическая аберрация и кома характеризуют аберрации широкого пучка лучей, а астигматизм, кривизна изображения и дисторсия - полевые аберрации. В зависимости от степени разложения коэффициентов продольных аберраций в ряд различают аберрации третьего, пятого и т. д. порядков.
Аберрации оптической системы выражаются в угловых и линейных величинах, а также в диоптрийной мере. Обычно погрешности изображения для точки на оси оцениваются в волновой мере, т. е. в долях длин волн, аберрации вне осевых точек определяются в любых указанных выше величинах.
Поперечные аберрации оптических систем, рассматриваемые в меридиональной и сагиттальной плоскостях, могут быть разложены в ряд по сте у0 пі Mx пеням малых величин Г»-7» Г , где е - расстояние от плоскости выход \s & %Z ного зрачка до плоскости изображения, yd - координата пересечения луча с плоскостью изображения, ю иМ1- координаты луча на выходном зрачке системы.
Сферическая аберрация. Сферическая аберрация характеризуется деформацией волновой поверхности, вышедшей из точки объекта, расположенной на оптической оси системы. Поскольку лучи ортогональны к поверхности волны, то в пространстве изображения нарушается гомоцентрич-ность пучка и вместо точечного изображения лучи пересекаются по некоторой кривой, образуя каустическую поверхность, симметричную относительно оптической оси. Световая энергия рассеивается, переходя из центрального пятна в дифракционные кольца, вследствие чего понижается контрастность изображения.
На рис. 1.5 схематически представлена продольная сферическая аберрация 8si , 5$2, б S3 относительно параксиального фокуса Fo положительной линзы для высот падения hi, hi и А? лучей, параллельных оптической оси в пространстве предметов.
Точки пересечения лучей с оптической осью в пространстве изображения находятся слева от параксиального фокуса F0 и характеризуют аберрацию, как недоисправленную. Отрицательная или рассеивающая линза дает положительную, т. е. переисправленную продольную сферическую аберрацию, так как рассматриваемые выше точки пересечения лучей с оптической осью расположены справа от параксиального фокуса. В частности, при расчете микрообъективов, продольную сферическую аберрацию обычно рас кладывают в ряд по степеням апертурного угла и (если кривая 8s достаточно плавная):
Если кривая сферической аберрации плавная, то можно ограничиться двумя членами второго и четвертого порядка. В большинстве случаев вычисляют разность хода не для гауссовой плоскости изображения, а для плоскости наилучшей установки, которой соответствует новая идеальная волновая поверхность. Наилучшая плоскость установки подбирается с таким расчетом, чтобы отклонение реальной волны от новой идеальной волны (сферы сравнения) было наименьшим.
В результате сферической аберрации понижается контрастность и размываются края объектов на изображении, что затрудняет определение точных границ объектов и, как следствие, увеличивается погрешность измерений.
Количественная оценка параметров объектов и структур по цифровым изображениям
Важной задачей оптической струк-туроскопии является определение по изображению основных показателей (концентрация, размеры, форма и другие параметры) различных видов объектов, составляющих, в общем случае, неоднородную структуру.
Процесс получения количественной оценки структуры изображения предполагает решение одной из основных проблем анализа сложных изображений - проблемы сегментации. Под сегментацией изображения понимается, как известно, разбиение изображения на области по сходству свойств их точек, например, по яркостному признаку.
В случае автоматизации методов количественного анализа, сегментацию необходимо рассматривать как основной начальный этап, заключающийся в построении формального описания изображения, качество выполнения которого во многом определяет успех решения задачи оценивания количественных характеристик объектов изображения.
Сегментация по яркости.
1. Пороговое ограничение по яркости. Рассмотрим несколько аналитических подходов к пороговому ограничению по яркости.
а) Метод априорной оценки вероятности значений яркости. Этот ме тод состоит в установлении порога на таком уровне, при котором общая сумма элементов с подпороговой яркостью согласована с априорными веро ятностями этих значений яркости. Например, может быть известно, что изу чаемые объекты, характеризующиеся определенным яркостным диапазоном (в интервале [0,N]) занимают х%площади изображения. Тогда пороговый уровень для такого изображения необходимо установить так, чтобы яркость —числа элементов была ниже порога. 100 v
б) Определение минимума бимодальной гистограммы. Данный метод состоит в выборе порога, соответствующего минимуму бимодальной гисто граммы, находящемуся между двумя ее пиками. Поскольку гистограмма имеет ступенчатый вид, то для определения этого минимального значения участок гистограммы между пиками можно аппроксимировать некоторой аналитической функцией, минимум которой находится с помощью произ 135 водных. Например, пусть х и у — соответственно оси абсцисс и ординат на гистограмме. Тогда кривая второго порядка у = ах2 +Ьх + с где а, Ъ и с— константы, обеспечивает простую аппроксимацию гистограм — h мы в районе ее «долины». Минимум гистограммы наблюдается при х = —. 2а
в) Метод оператора Лапласа. В этом методе используется дискретная аппроксимация оператора Лапласа, обычно она определяется как
Дх,у +1) + fix + \,у) + fix -l,y) + f(x,y-1) - 4f(x,y). Рассматривается область изображения в районе объекта, где яркость увеличивается с уровня низкого «плато» до уровня более высокого «плато», соединенных поверхностью. На плоских участках лапласиан равен нулю, а вдоль наклонной поверхности - немного отличается от нуля. В области перехода от низкого «плато» лапласиан будет иметь большое положительное значение, а при переходе к высокому «плато» - большое отрицательное значение. Гистограмма, построенная с использованием лишь точек исходного изображения, которые соответствуют очень высоким или очень низким значениям лапласиана, оказывается бимодальной с отчетливым минимумом между пиками. Этот минимум (его абсцисса) и берется в качестве порога ограничения яркости.
г) Метод поперечных сечений. В этом методе рассматриваются усред нения горизонтальных и вертикальных поперечных сечений профиля яркости изображения, которые определяются, соответственно, как JV-1 H(k) = t,F0 ,b) где первый аргумент функции F— абсцисса элемента изображения, а второй — его ордината.
Далее составляются гистограммы по столбцам и по строкам, по которым назначаются пороговые ограничения отдельно для строк и столбцов. После этого те строки или столбцы, для которых значение усредненного поперечного сечения оказалось ниже (выше) порога закрашиваются, например, в черный цвет. Элементы оставшихся строк и столбцов имеют то же самое значение яркости, что и исходное изображение.
д) Рекуррентный метод. При использовании этого метода на первом этапе выполняется пороговое ограничение изображения путем нахождения минимального значения между модами гистограммы яркости для того, чтобы отделить более яркие области от более темных. Затем формируются гистограммы для каждой сегментированной части. Если эти гистограммы не унимодальны, то полученные сегменты можно снова подвергнуть пороговому ограничению. Процесс продолжается до тех пор, пока гистограммы для всех сегментов не станут унимодальными или же не будет достигнут некоторый желаемый уровень сегментации.
2. Наращивание областей. Суть этого метода состоит в том, что соседние элементы с одинаковыми яркостями группируются вместе и образуют область. Для того чтобы на практике этот метод давал приемлемые результаты необходимо определить правила роста областей. Эти правила должны задавать последовательность следующих процессов: 1) выбор затравок областей; 2) наращивание областей; 3) слияние областей.
Когда оказывается, что область больше уже не может расти, ее метят (раскрашивают определенным цветом и (или) присваивают определенный номер), а затем находят начальный пиксел для другой области (которая будет иметь другую метку).
Правила Брайса и Феннема. На первом этапе процесса пары элементов изображения объединяются в группы, называемые "атомами", если они обладают одинаковой яркостью и являются четырехсвязными, т.е. оказались соседними либо по вертикали, либо по горизонтали. Затем по двум эвристическим правилам удаляются слабые границы между атомами. Пусть R{ и Д2есть две смежные области, полученные на предыдущем шаге слияния с периметрами Р,и Л2.Надо заметить, что после выполнения начальных этапов наращивания может оказаться, что некоторая область содержит ранее слитые подобласти с различными значениями яркости.
Алгоритмы повышения точности измерений и оценки количественных характеристик в компьютерных системах ОНК
Функция распределения (гистограмма) яркости изображения - важнейшая физическая характеристика структуры, представляющая собой количественное выражение поля оптических плотностей (яркостей) или поля концентраций компонентов структуры.
При исследовании дифференциальных различий объектов одного класса (а это представляет наибольшую практическую ценность для диагностики) любое воздействие, приводящее к морфологическим изменениям, выражается в изменении концентраций элементов структуры, которое проявляется в изменении функции распределения.
На основе статистических характеристик могут быть вычислены так называемые текстурные признаки, играющие важную роль в задачах распознавания структур изображений.
Гистограммные признаки первого порядка. Для многих практических целей весьма удобным является использование числовых характеристик -моментов функции распределения.
Дисперсия связана со средним перепадом оптических плотностей, т.е. средней контрастностью объекта - весьма важной по физическому смыслу характеристикой структуры. Если большие перепады оптической плотности встречаются редко, или абсолютное значение контраста мало, то как в первом, так и во втором случае дисперсия, выражающая средний контраст, будет мала. Коэффициент асимметрии
Если распределение симметрично относительно математического ожидания, то все моменты нечетного порядка (в том числе и коэффициент асимметрии) равны нулю. В простейшем случае двухфазного распределения (сочетание светлых и темных элементов) физический смысл коэффициента асимметрии состоит в том, что эти фазы не равноценны в отношении их «вклада», в структуру: если преобладает темная фаза, то будем иметь случай отрицательной асимметрии; если преобладает светлая фаза, то получим положительную асимметрию. Изменение асимметрии можно трактовать как формирование (или распад) одной из фаз. Коэффициент эксцесса і 255 = 1(/ ) (/)-3.
Четвертый центральный момент характеризует островершинность или плос-ковершинность распределения. Для нормального распределения эксцесс равен нулю; кривые, более островершинные по сравнению с нормальной, обладают положительным эксцессом; кривые, более плосковершинные, - отрицательным эксцессом. При анализе по оптической плотности положительный эксцесс может говорить о заметном преобладании узкого диапазона оптических плотностей в области математического ожидания. Отрицательный эксцесс, наоборот, соответствуют "размытости", среднего значения. 152 Энергия 255 )=0 Энтропия 255 HE = - P(i)\og2[P(i)]. г =0
Гистограммные признаки второго порядка. Гистограммные признаки второго порядка основаны на определении совместного распределения вероятностей пар элементов изображения. Двумерную пространственную взаимозависимость значений яркости элементов изображения вычисляют как матрицу смежности, выстраиваемую для каждого фиксированного расстояния и углового направления.
Пусть цифровая матрица изображения имеет размерность тхп и при этом изображение квантуется на 256 уровней яркости. Тогда процесс построчного сканирования можно рассматривать как последовательность тх.п испытаний, в каждом из которых осуществляется одно из 256 несовместных событий. Полная вероятностная картина возможных изменений, происходящих при переходе от одной точки изображения к следующей, отстоящей на фиксированной расстояние d под углом ф, задается матрицей Sdtt=(sy), которая и является матрицей переходных вероятностей, или матрицей смежности. Каждый элемент матрицы является оценкой условной вероятности того, что в данной точке изображения будет зарегистрирована яркость уровня /, при условии, что в предыдущей точке был зарегистрирован уровень j. Такая матрица, характеризующая пространственную взаимозависимость значений яркости изображения, симметрична.
Практические результаты построения автоматических классификаторов
Цифровая коррекция искажений оптико-электронного канала. Как было указано выше, задача реставрации изображений является особенно актуальной для портативных цифровых оптико-электронных систем, так как портативность оптической системы накладывает на нее определенные технические ограничения, влияющие на качество получаемых изображений. И в этом случае система компьютерной цифровой обработки изображений может существенно компенсировать искажения, вносимые такой портативной оптической системой.
Для того чтобы построить эффективные алгоритмы цифровой реставрации изображений необходимо знать количественные оценки искажений, вносимых реальной изображающей системой. Процедура реставрации сводится к моделированию, а затем к обращению искажающих преобразований. Поэтому для эффективной реставрации изображений необходимо адекватное моделирование процесса, порождающего искажения. В связи с этим предлагается разбить задачу восстановления на несколько этапов. Первый этап предполагает выделение на изображении однородных участков, в пределах которых ФРТ можно считать стационарной. Второй этап состоит в оценивании ФРТ на каждом выделенном участке изображения. На третьем этапе, в предположении, что ФРТ известна приближенно, формулируется и решается обратная задача восстановления исходного изображения. Эта задача сводится к решению интегрального уравнения Фредгольма 1-го рода типа двумерной свертки, которое, как известно, является некорректным, то есть неустойчивым к сколь угодно малым погрешностям измерений и ошибкам оценивания ФРТ. Для решения данной задачи был использован метод регуляризации Тихонова.
Для идентификации ФРТ можно выделить два основных подхода: априорный и апостериорный. В первом случае используются отклики реальной изображающей системы на некоторое тестовое изображение. Во втором слу дельных элементов. На рис. 3.9 функция G{a,P) - распределение яркости объекта наблюдения, функция FR\x,y)- распределение яркости в плоскости изображения, функция FR(x,y) - распределение электрического сигнала, функция FR(ml,m2)- реальное цифровое изображение. В данной модели предполагается, что реальная оптическая система является линейной с пространственно-инвариантной ФРТ. Связь указанных функций можно представить следующим образом: F;{x,y)=IJH(x-Z,yi)G&Tj)ddTi, где Н(х,у)- импульсная характеристика оптической системы, = Ма, ц = М/3, М - масштабный коэффициент оптической системы, F3R{x,y) = Q{FuR,x,y), где Q{-} - обобщенная передаточная функция преобразователя оптического сигнала в электрический, это преобразование понимается как поэлементное, FR (Щ,т2) = \\FR (&Л)Р(-mxbx,rj-m2Ay)d%d7], FR (w,, т2) = IK{FRP (w,, m2)}, где первое уравнение представляет процесс пространственной дискретизации изображения, Ах,Ау - шаги дискретизации, Р(х,у) - форма дискретизующего импульса, 1К{-} - обобщенная передаточная функция поэлементного квантования дискретизованного изображения.
Модель идеальной изображающей системы. Основные элементы идеальной изображающей системы совпадают с элементами реальной системы с той лишь разницей, что преобразование сигналов в идеальной системе осуществляется без искажений. Обобщенную модель такой изображающей системы можно представить в виде следующей структурной схемы
На рис. 3.10 функция G(a,/J) - распределение яркости объекта наблюдения, функция F(x,y)- идеальное распределение яркости в плоскости изображения, функция F,3(x,y) - распределение электрического сигнала, полу 182 ченного с помощью идеального детектора видеосигнала, функция Fl(mvm2) -идеальное цифровое изображение, которое могло бы быть получено в условиях отсутствия искажений оптической системы. В данной модели предполагается, что идеальная оптическая система является линейной. Связь указанных функций можно представить следующим образом: Ff{x,y)=\\G{S,ri)8(x,y-ii)d&ri, где 8{х,у) - ФРТ идеальной оптической системы, % = Ма, rj = Mp, М - масштабный коэффициент оптической системы, F?(x,y) = Q1{F?,x,y}, где Q{-} - обобщенная передаточная функция идеального преобразователя оптического сигнала в электрический, Ff{m„m2) = \\F \Ьгі)8{-тхЬх,гі-т2Ьу)сІ&гі, FI(ml,m2) = IK,{Ff(m1,m2)}, где первое уравнение представляет процесс идеальной пространственной дискретизации изображения, Дх,Ду - шаги дискретизации, S(x,y) -идеальный дискретизующий импульс, 1К,{-} - обобщенная передаточная функция идеального поэлементного квантования дискретизованного изображения.