Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Нечаева Мария Борисовна

Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков
<
Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Нечаева Мария Борисовна. Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков : Дис. ... канд. физ.-мат. наук : 01.04.03 Н. Новгород, 2005 150 с. РГБ ОД, 61:06-1/497

Содержание к диссертации

Введение

Глава 1. Отклик радиоинтерферометра со сверхдлинной базой (РСДБ) на широкополосное излучение, возмущенное турбулентной средой 25

1.1. РСДБ-метод исследования турбулентных сред 25

1.2. Формирование выходного сигнала интерферометра в экспериментах по просвечиванию солнечного ветра 29

1.3. Расчет спектральных и корреляционных характеристик принимаемого излучения в условиях плавно-неоднородной среды 37

1.3.1. Сигнал интерферометра при описании распространения излучения методом геометрической оптики 38

1.3.2. Сигнал интерферометра при описании распространения излучения методом плавных возмущений 43

1.4. Спектр мощности сигнала интерферометра в частных случаях при сильных и слабых возмущениях 48

1.4.1. Сильные флуктуации разности фаз 50

1.4.2. Слабые флуктуации разности фаз 54

1.5. Выводы главы 1 63

Глава 2. Отклик доплеровского большебазового интерферометра (ИББ) на монохроматическое излучение 65

2.1. Расчет спектральных и корреляционных характеристик принимаемого излучения в условиях плавно-неоднородной среды 66

2.1.1. Сигнал интерферометра при описании распространения излучения методом геометрической оптики 61

2.1.2. Сигнал интерферометра при описании распространения излучения методом плавных возмущений 69

2.2. Спектр мощности сигнала интерферометра в частных случаях при сильных и слабых возмущениях 71

2.2.1. Сильные флуктуации разности фаз 71

2.2.2. Слабые флуктуации разности фаз 74

2.2.3. Распространение излучения в многомасштабной среде 78

2.3. Выводы главы 2 81

Глава 3. Интерферометрические эксперименты по исследованию турбулентных сред методом просвечивания 83

3.1. РСДБ-эксперименты по просвечиванию плазмы солнечного ветра излучением внегалактических радиоисточников 84

3.1.1. Обзор РСДБ-экспериментов по исследованию космических сред методом широкополосной радиоинтерферометрии 84

3.1.2. РСДБ-эксперименты по исследованию плазмы солнечного ветра в 1994-1996 гг. на длинах волн 18 и 92 см 87

3.1.3. РСДБ-эксперименты по исследованию плазмы солнечного ветра в 1999 и 2000 гг. на длине волны 18 см 99

3.2. Экспериментальное исследование флуктуации концентрации кавитационных пузырьков в турбулентной водной среде методом интерферометрии 114

3.2.1. Интерферометрический эксперимент по зондированию турбулентной водной струи в открытом пространстве бассейна ультразвуковым сигналом 115

3.2.2. Интерферометрическое исследование турбулентного потока в трубе при зондировании ультразвуковым сигналом 126

3.3. Выводы главы 3 131

Заключение 134

Литература 141

Введение к работе

Актуальность темы диссертации:

Изучение турбулентных сред и исследование их влияния на распространяющееся излучение является традиционным направлением радиофизики. Важное практическое значение имеет развитие методов дистанционной диагностики, служащих для получения информации о параметрах среды распространения и их динамике. Результаты дистанционного зондирования используются для решения различных научных и прикладных задач радиоастрономии, оптики, геофизики, медицины и т.д.

Метод зондирования - один из основных методов дистанционной диагностики природных и искусственных сред - заключается в просвечивании среды эталонными сигналами и анализе их искажений, вызванных неоднородностями среды распространения. Перспективным направлением в исследованиях турбулентных сред является использование методов интерферометрии. При интерферометрическом приеме излучение, распространяющееся через турбулентную среду, принимается в двух разнесенных пунктах. Оценки параметров среды в этом случае можно получить из анализа относительных фазовых, частотных и амплитудных флуктуации излучения, возникающих на независимых трассах распространения под воздействием турбулентности. Особенность рассматриваемого в диссертации метода состоит в том, что диагностика среды осуществляется как при зондировании среды монохроматическими сигналами искусственных излучателей, так и при приеме широкополосного шумового излучения естественных источников.

Интерферометрический метод диагностики сред может применяться для изучения турбулентных потоков как в естественных условиях (океанских течений, газовых и плазменных потоков в ближнем и дальнем космосе), так и в искусственно созданных струях, пограничных слоях, плазмен-

ных образованиях. Особый интерес представляет исследование космических сред - ионосферы Земли, короны Солнца, межпланетной и межзвезд-

J) ной среды. Околосолнечная плазма и плазма солнечного ветра оказывают

наибольшее влияние на проходящее через них излучение, что сказывается на результатах радиоастрономических и астрометрических наблюдений. Исследование этих сред имеет большое значение для решения проблем физики солнечно-земных связей. Процессы, протекающие в солнечном ветре, формируют космическую погоду в Солнечной системе, воздействуют на атмосферу и биосферу Земли. Контроль состояния околосолнечной плазмы является основой геоэффективных прогнозов.

V В настоящее время диагностика межпланетной и околосолнечной

плазмы осуществляется различными радиоастрономическими способами [1], которые основаны на методе радиопросвечивания. Метод просвечивания, впервые предложенный в 1951 г. В.В.Виткевичем для исследования сверхкороны Солнца [2], состоит в приеме излучения источника (искусственного или естественного), прошедшего через среду со случайными флуктуациями электронной концентрации, и анализе эффектов модуляции фазы, амплитуды и частоты радиоволны.

Т' Радиоастрономическим методам исследования плазмы солнечного

ветра и межпланетной среды посвящено большое количество работ в области космической радиофизики [1-27]. Основными методами диагностики сред являются метод мерцаний [5-7] и метод радиозондирования среды сигналами космических аппаратов с приемом назехмным радиотелескопом [8-13], а также метод доплеровской большебазовой интерферометрии (ИББ) [3,14]. В последнее десятилетие в этой области исследований находят применение методы широкополосной радиоинтерферометрии со сверхдлинными базами (РСДБ) [15-27]. В данной работе рассматриваются возможности ИББ- и РСДБ-инструментов в задаче дистанционной диагностики солнечного ветра с целью определения параметров турбулентной

среды - скорости солнечного ветра и пространственных характеристик распределения электронной концентрации плазмы солнечного ветра.

Использование этих интерферометрических методов оказывается незаменимыми в тех случаях, когда на применение традиционных методов дистанционной диагностики накладываются ограничения. Так, метод интерферометрического приема позволяет исследовать неоднородности флуктуации электронной концентрации с характерными размерами, значительно превышающими масштабы, доступные методу мерцаний. Метод мерцаний [5-7] основан на измерении сцинцилляций интенсивности излучения космических радиоисточников. В частности, при приеме излучения дискретных космических радиоисточников, расположенных на малых угловых расстояниях от Солнца, метод мерцаний позволяет исследовать характеристики плазмы солнечного ветра в широких пределах гелиоцентрических расстояний и гелиоширот. Но флуктуации интенсивности обусловлены только относительно мелкомасштабными неоднородностями среды с характерными масштабами, не превышающими размер первой зоны Френеля, который даже для относительно длинноволнового радиоастрономического диапазона А,=92 см составляет 400 км при расстоянии до слоя неоднородностей, равном одной астрономической единице. Кроме того, при сильных возмущениях проходящего через исследуемую среду излучения космического радиоисточника (например, вблизи от Солнца) флуктуации интенсивности претерпевают насыщение.

Этого недостатка лишены радиоинтерферометрические методы, поскольку не утрачивают фазовую информацию: в том случае, когда внешний масштаб турбулентности превышает размер базы интерферометра, фазовые флуктуации не испытывают насыщения. Интерферометрический метод предоставляет уникальную возможность исследовать неоднородности плазмы солнечного ветра и солнечной короны с масштабами, сравнимыми с длиной проекции базы интерферометра. Так как в РСДБ длины базовых линий принимают значения от нескольких десятков километров

до нескольких тысяч километров (или десятков тысяч километров при использовании наземно-космических инструментов), то диапазон измерений расширяется как в сторону очень слабых мелкомасштабных неодно-родностей среды, так и в сторону более интенсивных крупномасштабных неоднородностей.

Метод доплеровской большебазовой интерферометрии (ИББ) [3,14], основанный на приеме узкополосных сигналов космических аппаратов, прошедших через изучаемую среду, позволяет извлекать обширную информацию о среде распространения из анализа амплитудных, фазовых и частотных характеристик принятых сигналов. Высокая монохроматичность первоначального излучения сигналов позволяет выделять даже самые слабые возмущения, вносимые средой. Но также как и метод просвечивания сред сигналами космических аппаратов с приемом одним наземным радиотелескопом, и метод дисперсной интерферометрии [12,13], основанный на зондировании среды когерентным излучением на кратных частотах, метод ИББ может использоваться только при строгой монохроматичности излучаемых сигналов. Кроме того, данные способы дают информацию о состоянии просвечиваемой среды только в узкой области вдоль направления траектории космического аппарата и могут использоваться лишь эпизодически - во время его полета.

Процедура обработки сигналов, принятая в радиоинтерферометрии со сверхдлинной базой (РСДБ), позволяет исследовать среду, просвечивая ее шумовым широкополосным излучением естественных внегалактических радиоисточников. В этом случае не требуется высокой степени когерентности сигналов, так как на выходное интерференционное колебание влияют только относительные фазовые флуктуации между сигналами, принятыми антеннами интерферометра, а фазовые нестабильности исходного сигнала не имеют значения. Учитывая, что запуски космических аппаратов дороги и не регулярны, весьма ценной является возможность проводить

диагностику плазмы солнечного ветра, не привязываясь к моменту пролета космического аппарата в интересующей области.

Таким образом, интерферометрические методы, исследуемые в данной работе, позволяют изучать пространственно-временную структуру средне- и крупномасштабных неоднородностей околосолнечной плазмы и межпланетной среды, а также предоставляют возможность расширить диапазон исследований как в сторону очень слабых, так и в сторону интенсивных неоднородностей. Информативность наблюдений возрастает при одновременных измерениях на многоантенных интерферометрических комплексах, содержащих базы различной длины и ориентации. При наблюдении источников, расположенных на различных угловых расстояниях и различных позиционных углах относительно Солнца, интерферометри-ческий метод позволяет исследовать распределение неоднородностей указанных масштабов, снимая их "мгновенный" портрет. В случае РСДБ-приема данные могут быть получены при наблюдении как монохроматических сигналов от космических аппаратов, так и широкополосного излучения естественных радиоисточников.

Выходным сигналом интерферометра является результат перемножения волновых полей в двух пунктах интерферометра, которое, вообще говоря, выполняется разными способами для ИББ- и РСДБ-методов. Если корреляционные характеристики флуктуации разности фаз в двух точках в теории рассеяния волн в турбулентной среде рассмотрены достаточно подробно [30,36], то анализу корреляции комплексных полей с учетом пространственного разноса приемников внимания практически не уделялось. Несмотря на то, что первые интерферометрические эксперименты по просвечиванию среды шумовым широкополосным излучением космических радиоисточников [15-27] и сигналами космических аппаратов [3,14] были проведены достаточно давно, выражения для спектра мощности выходного сигнала интерферометра, содержащего как фазовые так и амплитудные флуктуации принятого излучения, не было получено.

В большинстве работ при рассмотрении воздействия среды на сигнал интерферометра исследовались флуктуации интенсивности выходного сигнала инструмента. Анализ статистических характеристик флуктуации интенсивности позволял делать оценки углового уширения наблюдаемых источников и степени анизотропии неоднородностей [7,15,16].

Расчет статистических характеристик фазовых флуктуации выходного сигнала ИББ-интерферометра при приеме первоначально монохроматических сигналов космических аппаратов, приведен в монографии [3].

В работах [17,18] описаны результаты исследования фазовых флуктуации сигнала РСДБ-интерферометра при приеме шумового излучения естественных радиоисточников. Показано, что по спектрам мощности

флуктуации разности фаз возможно делать оценки коэффициента CN,

характеризующего интенсивность флуктуации электронной концентрации. Детального анализа полученных данных с целью выявления тонких особенностей спектра фазовых флуктуации не было проведено. Это связано с тем, что авторы [17,18] опирались на громоздкие выражения для спектральных характеристик [28], которые из-за своей сложности не позволили выявить особенностей рассматриваемых откликов и внести соответствующие коррективы в методику приема и обработки данных (например, сократить время интегрирования данных для построения спектра флуктуации разности фаз в более широкой полосе частот, что позволило бы сделать оценки скорости солнечного ветра и спектрального индекса пространственного спектра флуктуации параметра среды, как это показано в Главе 1).

Этот факт свидетельствует о важности построения адекватной модели эксперимента для создания полноценного универсального радиоинтер-ферометрического метода диагностики среды.

Кроме получения информации о среде распространения (измерение электронной концентрации, скорости солнечного ветра, интенсивности флуктуации параметров среды и т.д.), важной задачей является определение ограничений, налагаемых турбулентной средой на функционирование

наземных и наземно-космических радиоинтерферометров, а также на рабо
ту систем космической связи.
J\ Техника и методы радиоинтерферометрии со сверхдлинной базой

подробно описаны в книге [29], тем не менее аспекты проблемы влияния околосолнечной плазмы на сигнал РСДБ-систем требуют дополнительного рассмотрения.

Цель диссертационной работы:

Цель данной работы - развитие интерферометрических методов ди
агностики турбулентных потоков и разработка способов повышения их
Mf информативности при определении параметров турбулентной среды.

С этой целью решались следующие задачи:

  1. анализировалось распространение излучения в неоднородной среде и влияние этой среды на выходной сигнал интерферометра;

  2. разрабатывался способ восстановления информации о среде распространения по спектральному составу сигнала интерферометра;

3) выполнялось экспериментальное исследование возможностей рас-
4\* сматриваемого метода, а именно:

осуществлены лабораторные интерферометрические эксперименты по зондированию турбулентной водной среды в гидродинамическом бассейне;

реализованы РСДБ-эксперименты по радиопросвечиванию плазмы солнечного ветра излучением космических радиоисточников.

Содержание диссертации:

Диссертация состоит из введения, трех глав и заключения.

В первых двух главах проводился детальный анализ спектра мощности отклика интерферометра на излучение, прошедшее через турбулентную среду.

В диссертации описываются два интерферометрических метода
приема сигналов: РСДБ-метод, позволяющий исследовать среду при про-
.Jy свечивании ее широкополосным излучением, и ИББ-метод, применяемый

при зондировании среды монохроматическими сигналами. В тексте под названиями РСДБ и ИББ предполагаются только способы корреляции сигналов, которые могут применяться на интерферометрах с различными базовыми линиями (не только со сверхдлинными).

Теоретическое рассмотрение интерферометрического метода прово
дилось на примере просвечивания плазмы солнечного ветра электромаг
нитными волнами, но многие полученные результаты справедливы и для
Ч' волн другой природы, что подтверждается экспериментальными исследо-

ваниями, описанными в Главе 3.

В Главе 1 подробно рассмотрены процессы прохождения сигналов в трактах РСДБ-интерферометра и их корреляционной и спектральной обработки.

Процедура корреляции сигналов, характерная для радиоинтерферо
метрии со сверхдлинной базой, состоит в перемножении между собой
относящихся к одному и тому же волновому фронту излучения полей
Т^ сигналов, принятых разнесенными антеннами. Исследовалась временная

автокорреляционная функция результата перемножения, которая является пространственно-временной функцией когерентности четвертого порядка для комплексных полей в разнесенных пунктах приема.

Такой способ перемножения сигналов исключает собственные флук
туации источника (они полностью коррелированны в принимаемых сигна
лах) и выделяет только относительные возмущения, вносимые средой на
двух различных трассах распространения. Применение данной процедуры
позволяет получать информацию о параметрах среды при зондировании ее
' как монохроматическими сигналами космических аппаратов, так и широ-

кополосным излучением естественных радиоисточников.

Рассматривался случай распространения коротковолнового излучения в турбулентной среде с крупными хаотическими неоднородностями. Корреляционная функция поля выходного сигнала и спектр мощности вычислялись, исходя из строгой теории рассеяния волн в турбулентной среде, учитывающей макроскопическое движение, неоднородность и нестационарность среды распространения. Обычно при описании распространения излучения в турбулентных средах принимаются во внимание только случайные изменения параметров среды в пространстве, при этом временные вариации параметров описываются в квазистатическом приближении, а в конечных соотношениях восстанавливается через пространственную структуру по "гипотезе вмороженности" [30,31,5,15,16]). В диссертационной работе применен последовательно неквазистатический подход [32], который оказывается важным при описании распространения волн в средах с большими средними и флуктуационными скоростями течения, так как воздействие движения материальной среды и ее нестационарности может быть значительным и вызывать качественные изменения статистических характеристик излучения.

Вывод выражений для корреляционной функции поля выходного сигнала PC ДБ и его спектра мощности проводился двумя способами: методом геометрической оптики и методом плавных возмущений. В пределах применимости этих методов флуктуации амплитуды должны быть малы по сравнению с флуктуациями фазы, что позволяет упростить расчеты. Тем не менее, для полноты анализа расчет был выполнен с учетом корреляции между флуктуациями амплитуды и фазы; данный подход позволил выявить тонкую структуру спектра мощности выходного сигнала интерферометра.

Отметим, что предположение о слабых амплитудных флуктуациях выполняется при просвечивании дециметровым излучением околосолнечного пространства на гелиоцентрических расстояниях R > 15/?0(/?0- радиус Солнца). При прохождении трассы просвечивания в области, более

близкой к Солнцу, где амплитудные флуктуации достаточно сильные, необходимо использовать приближения модели хаотического фазового экрана [40,41].

Результатом проведенного теоретического анализа сигнала инструмента являются впервые выведенные соотношения для корреляционной функции сигнала интерферометра.

Далее вводились некоторые упрощения: описание временных изменений в плазме солнечного ветра, проводилось с использованием гипотезы вмороженности, предполагающей движение среды с некоторой скоростью. Пространственные изменения в среде задавались степенным спектром, справедливым в широкой области масштабов неоднородностей, ограниченной внутренним и внешним масштабами турбулентности.

Проанализированы способы восстановления параметров среды распространения из спектра мощности поля выходного сигнала инструмента. С этой целью рассматривались предельные случаи распространения излучения при сильных и слабых возмущениях разности фаз. Вводимые допущения в рассматриваемую модель позволили получить аналитические соотношения и описать спектр мощности поля простыми выражениями, явно содержащими параметры среды. Разобраны случаи различной ориентации проекции базовой линии относительно скорости переноса неоднородностей.

Проведенный теоретический анализ спектра мощности отклика интерферометра на излучение шумового радиоисточника, прошедшее через турбулентную нестационарную среду, показал, что спектр сигнала радиоинтерферометра должен заметно меняться в зависимости от интенсивности флуктуации проходящего излучения. В случае сильных фазовых возмущений выходной сигнал несет информацию об интенсивности флуктуации фазы, в случае слабых - о скорости солнечного ветра и показателе пространственного спектра флуктуации электронной концентрации. В отличие от метода слабых амплитудных мерцаний, в котором определяется ско-

рость дрейфа и спектральный индекс для неоднородностей с размерами в десятки - сотни километров, в случае РСДБ-приема речь идет об измерении этих параметров на масштабах, равных проекциям баз интерферометров - в сотни - тысячи километров.

В Главе 2 выполнен анализ спектра мощности поля сигнала интерферометра с большой базой (ИББ) при приеме монохроматических сигналов, излучаемых космическим аппаратом, прошедших через плазму солнечного ветра.

В экспериментах с использованием метода ИББ применяется процедура корреляции принятых сигналов, позволяющая исследовать параметры среды только при строгой монохроматичности первоначального излучения: в отличие от процесса корреляции при РСДБ-приеме, описанного в Главе 1, пространственно-временная корреляционная функция находится как результат перемножения сигналов, принятых в пунктах интерферометра, с некоторым временным сдвигом. Выражения для спектра мощности флуктуации фазы сигнала ИББ, возникающих при распространении в неоднородной среде, и для спектра мощности флуктуации частоты интерференции получены в работе [3]. В Главе 2 выполнен анализ воздействия турбулентности на проходящие сигналы с учетом неоднородности и нестационарности параметров среды и получены выражения для спектра мощности флуктуации поля сигнала ИББ, который не был рассмотрен в[3].

В Главе 2 подробно рассматривается процесс формирования сигнала при процедуре корреляции, применяемой в методе ИББ, и выводятся выражения для корреляционных и спектральных характеристик сигнала инструмента при тех же основных положениях, которые использовались в Главе 1. Описание рассеяния волн осуществлялось как в приближениях геометрической оптики, так и в приближениях метода плавных возмущений. Использование гипотезы вмороженности для учета временных изменений параметра среды и описание структуры плазмы степенным про-

странственным спектром позволили упростить расчеты и вывести выраже
ние для корреляционной функции поля сигнала в зависимости от парамет-
JL ров турбулентной среды. Получен вид спектра в предельных случаях силь-

ных и слабых флуктуации фазы. Выполнено сравнение поведения спектральных линий при ориентации базовой линии вдоль радиального направления от космического аппарата до Солнца и перпендикулярно к нему.

Рассмотрен случай распространения излучения в «многомасштаб
ной» среде в предположении, что крупномасштабные неоднородности
дают определяющий вклад в сильные фазовые флуктуации проходящего
излучения, а мелкомасштабные неоднородности формируют слабый фазо
ві вый фон возмущений в проходящем излучении.

Проведено сравнение корреляционных и спектральных характеристик сигнала интерферометра, полученных методом РСДБ и методом ИББ.

Опираясь на основные соотношения, полученные в Главах 1 и 2, вы
полнен численный расчет спектральных и корреляционных характеристик
выходного сигнала радиоинтерферометра. Результаты расчетов подтвер
дили первоначальные выводы теоретического анализа и позволили вы-
f/ явить некоторые другие тонкие детали рассматриваемых моделей. Графи-

ки, представляющие результаты расчетов, сопровождают теоретический анализ в первых двух главах.

Формирование выходного сигнала интерферометра в экспериментах по просвечиванию солнечного ветра

Рассмотрим следующую модельную задачу. Плоская волна от естественного источника широкополосного радиоизлучения проходит вдоль оси z через турбулентную среду с крупномасштабными случайными неод-нородностями электронной концентрации и принимается двухэлементным мультипликативным интерферометром с базой р. Схема эксперимента представлена на рис. 1.1. Для простоты анализа источник радиоизлучения будем считать точечным для интерферометра с данной базой при отсутствии слоя неодно-родностей. Так как в PC ДБ информация об амплитуде принимаемого излучения обычно не используется (перед регистрацией на магнитную ленту сигнал ограничивается, т.е. представляется в 1-битовой форме), при описании преобразования сигнала учтем только фазовые флуктуации. Ниже (см.(1.32)-( 1.62)) будет представлен расчет вида выходного сигнала радиоинтерферометра, содержащий и амплитудные, и фазовые флуктуации. Принимаемое излучение на разнесенных антеннах интерферометра представим в комплексном виде: где e l t\e "t 2 ts _ флуктуации поля, вызванные турбулентной средой; Ф\ \Фг + те) случайные функции, описывающие флуктуации фазы; rg- время пространственной задержки между сигналами (геометрическое запаздывание), которая в течение времени наблюдения источника медленно меняется из-за вращения Земли; в простейшем виде может быть представлена в виде линейной функции времени: Tg - задержка в начальный момент времени to, - скорость изменения задержки в этот же момент времени. Невозмущенное поле источника Е0 (t),E0 (t), принимаемое в полосе регистрации Ащ, представим интегралами Фурье: где COQ - средняя частота полосы приема, и(а )- спектральная плотность шумового сигнала, определяемая частотными характеристиками приемных трактов; мы рассматриваем типичный случай, когда спектр равномерен в полосе приема [29].

Высокочастотные сигналы переносятся в область видеочастоты путем их смешения с сигналами гетеродинов, частота которых coQ равна средней частоте полосы приема. Высокочастотная составляющая отфильтровывается. В цепи антенны 1 и антенны 2 получаем сигналы: где 1, = yt - a 0,Cl2 G 2— o)Q. Сигналы в приемных пунктах оцифровываются и в квантованном виде записываются на ленты видеомагнитофонов, которые затем транспортируются в пункт обработки. В настоящее время проводится тестирование новых систем регистрации информации, позволяющих формировать файлы данных, записывать их на жесткий диск компьютера, и транслировать через Интернет в центр корреляционной обработки. В центре обработки производится корреляция записей.

В корреляторе прежде всего выравниваются времена прохождения излучения от источника до приемных антенн, т.е. компенсируется пространственная задержка zg введением расчетного временного сдвига т0. При корреляции сигналы от антенн перемножаются между собой и усредняются в течение некоторого времени предварительного накопления Тх, что позволяет подавить шумы исходных сигналов: (Здесь звездочка означает комплексное сопряжение.) Предварительное накопление позволяет существенно сжать количество информации на выходе коррелятора. Величина Тх выбирается такой, чтобы при усреднении не интегрировалось интерференционное колебание на выходе коррелятора, т.е.: где частота интерференции. Однако при этом необходимо, чтобы время накопления было больше времени корреляции исходных шумовых сигналов: Так как фазовые возмущения фх (t) и ф2 (/) - медленные функции времени, то предварительное накопление на них не сказывается. Полагая случайный процесс и{со) -эргодическим, усреднение во времени можно заменить статистическим усреднением по ансамблю реализаций с относительной среднеквадратичной погрешностью: Отметим, что в РСДБ используются комплексные корреляторы различных типов [29], на выходе которых формируется действительная и мнимая составляющие сигнала коррелятора. Такой способ корреляции позволяет исследовать амплитуду и фазу взаимной корреляционной функции Vk(t,T0). При дальнейшем анализе корреляционную функцию Vk(t,t0) будем представлять в комплексном виде.

Спектр мощности сигнала интерферометра в частных случаях при сильных и слабых возмущениях

Рассмотрим случай сильных флуктуации разности фаз при распространении излучения в неоднородной среде ([ (г,ґ)П»1. При вычислении Г(г)(см.(2.5)) разложим в ряд структурную функцию D(T) вблизи экстремальной точки тт = px/Vx и ограничимся первыми членами ряда. В результате преобразований приходим к следующему выражению для корреляционной функции: На рис.2.1 представлена корреляционная функция сигнала интерферометра (разделенная на максимум) при сильных фазовых флуктуациях принятого излучения. На рис.2.2 помещен нормированный спектр, построенный в результате расчета по формуле (2.17) (по оси абсцисс отложена частота в Гц: F -Сі0/2тг).

Тонкой линией показана действительная часть спектра; жирной линией - модуль. Как и в случае широкополосного приема, огибающая спектра описывается функцией Гаусса. В отличии от спектра сигнала, получаемого при РСДБ-приеме (см.(1.67), рис.1.5), рассматриваемый спектр является быстро осциллирующей функцией. Частота осцилляции определяется отношением проекции скорости к проекции базы интерферометра, направленной вдоль скорости: В (2.17) присутствуют компоненты, содержащие продольную составляющую скорости солнечного ветра (2.16), которые отвечают за смещение максимума спектра относительно нуля по оси частот. Отметим, что определить данный эффект численно удается при использовании приближения неквазистатичности среды распространения. Это смещение вызвано корреляцией между флуктуациями амплитуды и фазы. Для случая, когда р = 0, т.е. при приеме излучения в одной точке величина, этот эффект описан в [37]. Из-за малых флуктуации амплитуды в исследуемых случаях, которые вызывают смещение максимума спектра, величина Аа пренебрежимо мала. Полуширина спектра на уровне половины амплитуды Jlco2) = Jv Bp определяется фазовыми флуктуациями и прямо пропорциональна модулю скорости. Выразим ее через эффективный размер неоднородностей комплексного поля излучения lE. При р = О величина 1Е связана с характерным масштабом плазменных неоднородностей / следующим образом [36]: - дисперсия флуктуации фазы. Масштаб / (2.20) может существенно изменяться в зависимости от показателя спектра р. Так, расчеты величины / с учетом соотношения (2.21) показывают, С учетом (2.19)-(2.21) величина (со ) принимает вид: Следовательно, измерение полуширины спектра мощности при сильных фазовых флуктуациях при известном значении скорости переноса неоднородностей дает информацию о масштабе 1Е, характеризующем интенсивность фазовых флуктуации. Рассмотрим случай слабых флуктуации разности фаз [ (г, )-0(г + р,ґ + г)]2)«1. Разложим слагаемые функции (2.5) в ряд и после Фурье-преобразования получим спектр, который будет иметь вид спадающей степенной функции.

Полагая Vy=0, выражение для спектра получим в виде: В случае, когда ориентация базы интерферометра и скорости солнечного ветра совпадают {Vy =0,ру =0), спектр мощности записывается следующим образом: Полученная функция (2.24) - спадающая функция, осциллирующая около оси частот. Частоты, в которых модуль спектра принимает максимальные значения, определяются соотношением: Т.е. при известном значении проекции базы по положению максимумов (2.25) на оси частот возможно оценить скорость переноса неоднородностей на трассе распространения излучения. Следует обратить внимание, что определение скорости по форме частотного спектра на интерферометре с большой базой могут быть проблематичными из-за экспоненциально низких значений измеряемого спектра и высокого уровня шумов. На рис.2.3 приведен модуль спектра при слабых флуктуациях фазы, построенный по соотношению (2.24) для случая, когда база ориентирована вдоль скорости солнечного ветра р± Vx (по оси абсцисс на рисунках отложена частота в Гц: F = Q012я ). На крыльях спектра четко выражены осцилляции. На графике 2.3 можно выделить два характерных участка. На частотном участке I при Q0 К(УХ значение спектра постоянно (на низких частотах cos(Q0)—И). Максимум спектра расположен в 0 по оси частот независимо от взаимной ориентации поперечных проекций скорости переноса неоднородностей и базы интерферометра. На более высоких частотах - участок II (Q0» KQVX) - индекс огибающей спектра мощности сигнала интерферометра связан с показателем пространственного спектра р (1.49) простым соотношением: (Функция (2.26) обозначена на рис.2.3. пунктирной линией). На рис.2.4 построен спектр для случая, когда угол между рх и V± равен 30. Осцилляции, описываемые выражением (2.25), выражены слабее чем в предыдущем примере. Поведение огибающей спектра на высоких частотах отличается от степенного закона (2.26), характерного для случая PJV±. При ориентации поперечной проекции базы поперек скорости дрейфа неоднородностей р± ±V±осцилляции на крыльях спектра не наблюдается (рис.2.5.). Спектральный индекс р по показателю спектра мощности сигнала определить не удается. Особенность модуля спектра, обозначеная на рис.2.4 и рис.2.5 "F " соответствует минимуму спектра мощности: на выноске на рис.2.5. показан участок спектра в области частоты F в линейном масштабе. Эта особенность спектра определяется функцией Макдональда в выражении (2.23). Частота экстремума сложным образом зависит от параметров среды. Сравнивая вид корреляционной функции и спектра мощности с теми же характеристиками, выведенными в Главе 1 для РСДБ-приема, нужно отметить, что общая форма функций сохраняется, но и имеется ряд отличий. Корреляционная функция смещена на величину тт, которая зависит от соотношения проекции базы интерферометра и скорости. В случае, когда PJJIVL, по положению максимума измеряется скорость переноса неоднородностеи тт = — -; при использовании методов широкополосного РСДБ оценок скорости по виду корреляционной функции сделать не удается. При сильных фазовых флуктуациях огибающая спектра является функцией Гаусса, как и при РСДБ-приеме, но при этом спектр имеет высокочастотное заполнение, зависящее от соотношения скорости и длины базы интерферометра (2.18). Полуширина кривой связана с эффективным масштабом неоднородностеи поля излучения (2.22). При слабых фазовых возмущениях спектр мощности описывается спадающей осциллирующей функцией, главный максимум которой располагается в 0 по оси частот. В отличии от спектра, описанного в 1.1, спектр (2.23) не содержит перегиба. При ориентации базы вдоль скорости переноса неоднородностейтакже как и в случае РСДБ-приема по спектральному индексу спектра мощности измеряется показатель пространственного спектра флуктуации электронной концентрации (РСДБ-метод позволяет оценивать величину р и при произвольной ориентации базы). По положению локальных максимумов на "крыльях" спектра можно делать оценки для скорости солнечного ветра.

Экспериментальное исследование флуктуации концентрации кавитационных пузырьков в турбулентной водной среде методом интерферометрии

Анализ спектрального отклика интерферометра на излучение, возмущенное турбулентное средой, проведенный в Главе 1, показал возможность оценки параметров среды распространения по искажениям сигнала инструмента. Проведенные экспериментальные исследования плазмы солнечного ветра позволили сделать предположения о пространственной структуре крупномасштабных неоднородностеи (п. 3.1), оценить скорость переноса неоднородностеи по частоте излома спектра. Тем не менее оценки скорости переноса неоднородностеи по положению локальных минимумов спектра провести не удалось. Возникла необходимость проведения модельных экспериментов в лабораторных условиях для подтверждения работоспособности метода. В Главе 1 анализ интерферометрического сигнала проводился для электромагнитных волн, но многие полученные результаты справедливы и для волн другой природы. В частности, в последние годы уделяется большое внимание акустическому зондированию турбулентных жидкостей, содержащих газовые пузырьки [48-51]. Рассматриваемый интерферометрический метод может быть успешно применен для исследования неоднородностеи концентрации кавитационных пузырьков в турбулентном водном потоке. Исследование этого вопроса было интересно тем, что в акустике метод широкополосного интерферометрического приема для диагностики возмущенной водной среды ранее не применялся. Результаты модельных экспериментов по исследованию распространения звуковых волн в воде опубликованы нами в работах [52-57]. В данной главе приводится более подробное описание экспериментов. Бассейн глубиной 4.7 м, шириной 3.8 м и длиной 5 м заполнен водой. Насос создавал турбулентную струю, которая вытекала горизонтально из затопленного на 50 см кавитирующего сопла.

Скорость выброса воды, концентрация пузырьков газа в струе, а следовательно, и скорость звука распространяющегося излучения, регулировались подбором сопла и изменением давления воды в потоке. Ультразвуковой сигнал распространялся через затопленную водяную турбулентную струю от излучателя до двух приемников интерферометра (ось Z на рис.3.19). Водный поток направлялся поперек трассы распространения излучаемого сигнала. База интерферометра была параллельна оси водного потока. Расстояние между приемниками Ь - база интерферометра - изменялось в ходе эксперимента и принимало дискретные значения от 5 до 34 см. Скорость выброса воды из сопла была равна Vc=20-25 м/с и уменьшалась обратно пропорционально расстоянию. Конструкция установки позволяла изменять дистанцию между соплом и трассой зондирования, что предоставляло возможность исследовать турбулентную среду при различных скоростях потока. Излучатель, изготовленный из плоской круглой пьезокерамической пластины, и два разнесенных приемника погружались на ту же глубину, что и центр сопла.

Приемники ультразвука, имеющие размеры 7x55 мм, располагались вертикально. Такая геометрия приемников и их ориентация позволяли уменьшить влияние реверберационной помехи от поверхности воды. База интерферометра Ъ - расстояние между приемниками - изменялась от 5 до 32 см. Т.к. измерения проводились в ограниченном объеме, для исключения влияния реверберационных помех излучение осуществлялось в импульсном режиме с частотой следования импульсов =50 Гц и длительностью импульсов dt=600 мкс. В качестве источника зондирующего сигнала использовался либо синусоидальный сигнал на несущей частоте /1=360 кГц, либо шумовой сигнал с верхней граничной частотой шума/=600 кГц. В каждом приемном тракте устанавливались ограничители уровня сигнала, позволявшие исключить амплитудные флуктуации, возникающие при прохождении излучения через турбулентную кавитирующую струю, где сигнал испытывал амплитудные и фазовые флуктуации. Исследуемым параметром среды в данных работах являлась концентрация кавитационных пузырьков.

Интерферометрическое исследование турбулентного потока в трубе при зондировании ультразвуковым сигналом

Турбулентный поток создавался в трубе квадратного сечения 5x5 см, изготовленной из звукопроницаемого материала. Ультразвуковой сигнал частоты =235 кГц распространялся вдоль оси Z от излучателя до двух приемников интерферометра перпендикулярно потоку. Излучатель из круглой пластины, использовавшийся в предыдущих экспериментах, был заменен протяженным излучателем, изготовленным из набора плоских прямоугольных пьезокерамических пластин, который в исследуемом участке потока создавал плоскую ультразвуковую волну. В первом цикле экспериментов на новой установке исследовались флуктуации концентрации кавитационных пузырьков внутри трубы, сформированные кавитирующим соплом. Во втором цикле исследовались флуктуации, созданные специально установленным пропеллером, который вносил дополнительное возмущение и искажал характер распределения неоднородностей среды. Пассивный пропеллер был помещен в трубу поперек потока.

Так же как и в предыдущих экспериментах, исследовался случай слабых флуктуации разности фаз при зондировании водного потока в трубе шумовым широкополосным и монохроматическим ультразвуковым излучением. Концентрация пузырьков в среде подбиралась таким образом, чтобы флуктуации разности фаз, набегающие на двух трассах, не превышали 10, что контролировалось фазовым детектором. Предполагалось, что средняя скорость переноса неоднородностей распределения кавитационных пузырьков V постоянна как на всей протяженности трубы, так и по ее ширине. На рис.3.30 и рис.3.31 приведен спектр мощности сигнала интерферометра в линейном (рис.3.30) и логарифмическом (рис.3.31) масштабах. Частотное разрешение df=QA5 Hz. Измерения проводились на интерферометре с базой 6=35 см. Жирной линией показан экспериментальный спектр, тонкой линией - спектр, построенный в результате численного моделирования. выбирались таким образом, чтобы экспериментальная кривая совпадала с теоретической. Было получено, что величина внешнего масштаба Л0при этом принимала большие значения: Л0 100см, которые превышают размеры трубы, и не могут соответствовать процессам с развитой турбулентностью. Были внесены уточнения в модель струи, в результате которых спектр не изменил своей формы, но в качестве внешнего масштаба в данном случае выступал эффективный масштаб Aej- = V/coQ.

Эта величина определяется эффективной частотой пульсаций C0Q , которые генерируются на сопле насоса и переносятся потоком, и зависит только от свойств кавитирующего сопла. На крыльях экспериментальных спектров просматриваются осцилляции, периодичность которых по оси частот определяется отношением скорости потока к базе интерферометра и согласуется с заданной моделью. Тем не менее, значения экспериментального спектра в минимумах не равны нулю, что может объясняться значительными флуктуациями скорости потока, которые привели к сглаживанию минимумов и исчезновению нулей. Скорость потока, определенная по положению локальных минимумов спектра, приведенного на рис.3.30 и рис.3.31, равна V = 0.9 ± 0.07 м/с. По наклону спектра (см. рис.3.31) измерен показатель пространственного спектра флуктуации концентрации кавитационных пузырьков р=Ъ. 5. По результатам 12 измерений на интерферометре с базами Ь=\5 см, 20 см, 25 см была оценена средняя скорость потока V = 0.9 ± 0.08 м/с и спектральный индекс р=2.9 ± 0.2.

Для того, чтобы исследовать процессы турбулентности в потоке при изменении характера возмущений, в трубе поперек потока был установлен вентилятор (рис.3.29). Конструкция установки позволяла изменять дистанцию между соплом и трассой зондирования (одновременным смещением излучателя и интерферометра вдоль оси X), что дало возможность исследовать турбулентную среду в различных состояниях. На рис.3.32, 3.33, 3.34 приведены примеры спектров, полученных при положениях трассы зондирования хь Хг, Хз соответственно (см. рис.3.29).

Измерения показали, что при прохождении трассы зондирования между соплом насоса и вентилятором (положение Xj на рис.3.29), характер спектров мощности не отличается от результатов предыдущих экспериментов. Среднее значение показателя пространственного спектра оценивается величиной /7=2.7 ± 0.4, скорость потока - V = 0.90 ± 0.05 м/с (рис.3.32). При зондировании струи в трубе на участке после вентилятора (положение X2 на рис.3.29) характер турбулентности сильно меняется: спектры становятся более пологими (спектральный индекс/7=1.7 ±0.1).

Похожие диссертации на Теоретическое и экспериментальное исследование флуктуаций волновых полей при интерферометрической диагностике турбулентных потоков