Введение к работе
Актуальность работы.
В Российской Федерации энергосбережение является важнейшей задачей. Актуальность этой проблемы обусловлена в первую очередь весьма низкой среднегодовой температурой окружающей среды (– 5,5 С), значительной длительностью отопительного сезона (в целом ряде регионов РФ этот показатель превышает 200 дней, а в отдельных регионах отопление зданий и сооружений осуществляется постоянно), а также наличием большого числа морально и физически устаревшего оборудования. Масштабность этой проблемы для нашей страны характеризуется следующими показателями. Длина теплопроводов систем теплоснабжения страны составляет 260 тысяч км. Из них порядка 60 тысяч км находятся в аварийном состоянии. Потери тепла при транспортировке достигают 80 млн. т. у. т. в год при общем расходе на теплоснабжение 400 млн. т. у. т. в год. Ежегодные потери энергоресурсов в нашей стране сравнимы с годовым энергопотреблением промышленно развитых европейских государств.
В значительной мере сверхнормативные потери тепла обусловлены неудовлетворительным техническим состоянием теплоизоляционных конструкций трубопроводов и оборудования. Поэтому задача улучшения теплоизоляции трубопроводов и оборудования систем теплоснабжения является весьма актуальной.
В последнее время на отечественном рынке появились принципиально новые теплоизоляционные материалы, создаваемые с использованием полых микросфер и различного рода связующих. Однако на сегодняшний день теплофизические свойства этих материалов не изучены в полной мере. Опубликованные данные показывают весьма существенную разницу значений коэффициента теплопроводности одних и тех же материалов.
По действующим на сегодняшний день стандартам на территории РФ определение коэффициента теплопроводности теплоизоляционных материалов, предназначенных для трубопроводов систем теплоснабжения, осуществляется тестированием плоских образцов в стационарном изотропном температурном поле при комнатных условиях, что не соответствует реальным эксплуатационным условиям и приводит к существенным ошибкам в оценке коэффициента теплопроводности.
Целью диссертационной работы является определение эффективности тонкопленочных теплоизоляционных покрытий применительно к теплоизоляционным конструкциям трубопроводов и оборудования систем теплоснабжения.
Научная новизна работы состоит в следующем:
разработана методика определения термического сопротивления и коэффициента теплопроводности тонкопленочных теплоизоляционных покрытий (ТТП), сформированных на металлических поверхностях цилиндрической формы;
впервые определено влияние:
диаметра газонаполненных микросфер на коэффициент теплопроводности однослойного ТТП, сформированного на цилиндрической поверхности;
концентрации газонаполненных микросфер на коэффициент теплопроводности однослойного ТТП, сформированного на цилиндрической поверхности;
количества слоев покрытия на термическое сопротивление ТТП при использовании газонаполненных и вакуумированных микросфер оптимального диаметра и максимально возможной концентрации;
определена доля потерь тепловой энергии, обусловленная лучистой составляющей теплообмена, на трубной теплоизолированной поверхности с экранированным многослойным ТТП;
Достоверность. Достоверность полученных результатов определяется многократной повторяемостью экспериментальных данных, использованием высокоточных современных средств измерений, определением погрешности измерений, использованием современной системы программирования Matlab R2006а.
Практическая ценность работы:
созданный экспериментальный стенд позволяет в широком диапазоне режимных параметров эксплуатации трубопроводов систем теплоснабжения определять термическое сопротивление тонкопленочных многослойных теплоизоляционных покрытий;
показано, что применительно к системам теплоснабжения в структуре ТТП наиболее целесообразно использование вакуумированных микросфер;
на основании результатов исследований разработана структура экранированного многослойного ТТП для теплоизоляции трубопроводов и оборудования систем теплоснабжения, сопоставимого по эффективности с пенополиуретановой теплоизоляцией;
разработан алгоритм определения эффективности использования ТТП для теплоизоляции трубопроводов и оборудования в системах теплоснабжения.
Апробация работы. Результаты работы представлены на Всероссийской научно-практическую конференции "Повышение надежности и эффективности эксплуатации электрических станций и энергетических систем" ЭНЕРГО-2010 (г. Москва, 2010 г), на XIV, XV-ой Международных научно-технических конференциях ГОУВПО МЭИ (ТУ) (г. Москва, 2008, 2009 гг.); на Четвертой всероссийской Школе-семинаре молодых ученых и специалистов "Энергосбережение - теория и практика" (г. Москва, 2008 г.); на заседаниях НТС кафедры «Промышленных теплоэнергетических систем» и научного центра "Повышение износостойкости энергетического оборудования электростанций" МЭИ (ТУ).
Публикации. Результаты исследований и разработок, отражающие содержание диссертационной работы и полученные в ходе ее выполнения, представлены в 7 публикациях, в том числе в 4 статьях, опубликованных в реферируемых журналах из перечня ВАК.
Автор защищает:
методику определения термического сопротивления и коэффициента теплопроводности тонкопленочных теплоизоляционных покрытий, сформированных на металлических поверхностях цилиндрической формы;
конструкцию экспериментального стенда, позволяющего в широком диапазоне режимных параметров эксплуатации трубопроводов систем теплоснабжения, исследовать ТТП;
результаты экспериментальных исследований по определению влияния:
диаметра газонаполненных микросфер на коэффициент теплопроводности однослойного тонкопленочного теплоизоляционного покрытия, сформированного на цилиндрической поверхности;
концентрации газонаполненных микросфер на коэффициент теплопроводности однослойного тонкопленочного теплоизоляционного покрытия, сформированного на цилиндрической поверхности;
количества слоев покрытия на термическое сопротивление ТТП при использовании газонаполненных и вакуумированных микросфер оптимального диаметра и максимально возможной концентрации;
результаты экспериментальных исследований по определению доли потерь тепловой энергии, обусловленной лучистой составляющей теплообмена, на трубной теплоизолированной поверхности с экранированным многослойным ТТП;
результаты экспериментальных исследований, показывающие эффективность использования вакуумированных микросфер в ТТП применительно к системам теплоснабжения;
структуру экранированного многослойного ТТП для теплоизоляции трубопроводов и оборудования систем теплоснабжения, сопоставимого по эффективности с пенополиуретановой теплоизоляцией;
алгоритм определения эффективности использования ТТП для теплоизоляции трубопроводов и оборудования в системах теплоснабжения.
Структура и объем работы. Диссертационная работа состоит из введения, четырёх глав, выводов, списка использованной литературы. Работа содержит 133 страницы основного машинописного текста, 47 рисунков, 14 таблиц, библиография содержит 63 наименования.