Введение к работе
Актуальность работы. Технический прогресс всегда связан с появлением новых технологий. Конец XX и начало XXI веков ознаменовались бурным развитием нанотехнологий, открывающих путь к созданию новых материалов, систем и устройств с рекордными параметрами, принципиально новыми свойствами и возможностями. Нанотехнологии имеют дело с объектами, размеры которых < 100нм и поэтому могут быть реализованы на практике только совместно с прецизионными методами контроля и диагностики. Считается, что нанотехнологические идеи перешли в практическую плоскость после появления сканирующего туннельного микроскопа (СТМ) [1], изобретатели которого Г. Биннинг и Г. Рорер были удостоены Нобелевской премии по физике в 1986 году. СТМ стал родоначальником приборов нового класса - сканирующих зондовых микроскопов (СЗМ). Чувствительным элементом всех СЗМ является зондовый датчик с нанозондом (НЗ) в виде твердотельного или полого острия. Вид физико-химического взаимодействия между НЗ и образцом, детектируемый в процессе измерений, определяет тип СЗМ. В настоящее время известно более 20-ти типов СЗМ, с помощью которых исследуют нанорельеф поверхности, измеряют локальные механические, фрикционные, электрические, электро-химические, оптические, электронные, магнитные (включая спиновые), тепловые и др. характеристики материалов различной природы. СЗМ стал одним из базовых инструментов нанотехнологий [2,3], поскольку он обеспечивает не только измерение локальных свойств, но и позволяет модифицировать поверхность материалов с помощью высоких локальных механических давлений, электрических полей и токов большой плотности, а также позволяет манипулировать наночастицами, вплоть до перемещения отдельных атомов. Очевидно, что большое разнообразие СЗМ поддерживается разнообразием зондовых датчиков и НЗ с соответствующими технологиями изготовления. Наиболее широкое распространение среди СЗМ получили сканирующие силовые микроскопы (ССМ). ССМ базируются на зондовых датчиках с НЗ в виде кремниевых кантилеверов, изгиб которых под действием локального силового взаимодействия с поверхностью исследуемого образца детектируется оптическим методом. Технология изготовления кантилеверов основана на хорошо разработанных кремниевых технологиях. Альтернативным кантилеверному зондовому датчику (КЗД) является пьезорезонансный зондовый датчик (ПРЗД) [4], возможности которого в составе СЗМ мало исследованы. В настоящее время ПРЗД обладает значительно меньшей механической добротностью, чем КЗД и не может быть использован при измерении малых локальных сил. Вместе с тем, разработка технологии изготовления ПРЗД и использование таких датчиков в составе СЗМ представляется весьма актуальной задачей, поскольку в ПРЗД в отличие от КЗД измеряемое взаимодействие сразу преобразуется в электрический сигнал. Отсутствие оптического канала детектирования в ПРЗД дает датчикам этого типа определенные преимущества, поскольку оптический канал не всегда совместим с условиями работы СЗМ. Другим существенным преимуществом ПРЗД является его простота и отсутствие оптических юстировок. Наконец, ПРЗД допускает использование более массивных зондов, что становится принципиальным при создании датчиков с зондами наноинденторами из особотвердых материалов, или с зондами в виде стеклянных микропипеток (МП). Актуальность создания ПРЗД обусловлена также тем, что СЗМ на основе ПРЗД с зондами наноинденторами и микропипетками нужны для проведения исследований и разработок в области наноматериаловедения, электрохимии, цитологии, нанобиотехнологии.
Цель диссертационной работы. Целью работы было создание, исследование и апробация новых типов ПРЗД с расширенными функциональными возможностями, высокой стабильностью, чувствительностью и пространственным разрешением. Предметом исследования была технология изготовления ПРЗД с различными НЗ и исследование их функционирования в составе СЗМ в режимах полуконтактной силовой микроскопии, наноиндентирования, динамической силовой литографии, сканирующей микроскопии ионной проводимости.
Задачи исследования. Для достижения поставленной цели необходимо было решить следующие задачи:
-
провести численный анализ резонансных частот ПРЗД и механической устойчивости НЗ под действием сил продольного сжатия,
-
провести численное моделирование работы СЗМ с НЗ в виде МП в режиме ионной проводимости,
-
разработать технологию и изготовить ПРЗД с улучшенной стабильностью работы и улучшенным пространственным разрешением в режиме динамической силовой литографии по сравнению с ПРЗД известной конструкции на основе пьезокерамической трубки с вольфрамовым НЗ,
-
разработать технологию и изготовить ПРЗД с улучшенной механической добротностью, по сравнению с ПРЗД известной конструкции на основе пьезокерамической трубки с вольфрамовым НЗ,
-
разработать технологию и изготовить ПРЗД с твердым НЗ на основе Al2O3 (корунд) взамен ПРЗД с НЗ на основе алмаза,
-
разработать технологию и изготовить ПРЗД с НЗ на основе МП,
-
исследовать разработанные ПРЗД в составе СЗМ "NanoEducator"
Методы исследования. Для решения поставленных задач применялись следующие методы исследования:
-
-
анализ литературных источников по применению и технологии изготовления НЗ,
-
математическое моделирование с использованием аналитических методов и метода конечных элементов,
-
комплексный технологический подход при изготовлении образцов НЗ, включающий: лазерную и тепловую вытяжку МП, электрохимическое травление и полировку вольфрамовых (W) заготовок, УФ отверждение полимеров, осаждение металлоуглеродных наноструктур из газов-прекурсоров под действием фокусированных электронного или ионного пучков, модификацию боросиликатных МП, корундовых наконечников, W острий фокусированным ионным пучком
-
комплексная нанодиагностика НЗ, включающая оптическую, электронную, ионную и сканирующую зондовую микроскопии,
-
экспериментальная апробация ПРЗД в составе СЗМ в режимах полуконтактной силовой микроскопии и динамической силовой литографии.
Основные положения, выносимые на защиту.
1. Комплексное применение технологий фокусированных электронного или ионного пучков, электро-химического травления и УФ полимеризации тонкослойного клеевого покрытия реализует технологию изготовления механически устойчивых специализированных зондов в виде:
нановыступа на вершине W иглы, для динамической силовой литографии с пространственным разрешением ~ 50 нм,
заостренного корундового наконечника на торце пьезокерамического резонатора для наноиндентирования с одновременной визуализацией нанорельефа полученного отпечатка,
металл-углеродного нановискера на пьезокристаллическом кварцевом резонаторе с механической добротностью ~150 единиц.
ПРЗД камертонного типа на основе двух пьезокерамических трубок имеет более устойчивые резонансные характеристики по сравнению с датчиком на основе одиночной пьезотрубки.
Применение технологии тепловой вытяжки стеклянного капилляра с последующей модификацией его заостренного торца с помощью технологии фокусированного ионного пучка реализует технологию изготовления пьезорезонансного зондового датчика для работы в режиме ионной проводимости с одновременной визуализацией поверхности диэлектрического образца в режиме полуконтактной силовой микроскопии с пространственным разрешением 100 - 150 нм.
Научная новизна работы состоит в том, что в ней впервые предложены технологии изготовления, а также изготовлены, исследованы и апробированы ПРЗД различного типа, существенно расширяющие функциональные возможности СЗМ, а именно: камертонного типа, с вольфрамовым НЗ с нановыступом на вершине острия, с НЗ в виде металлоуглеродного вискера на кварцевом резонаторе, с корундовым НЗ - наноиндентором, с НЗ в виде боросиликатной микропипетки с нановыступом на торце.
Достоверность научных результатов, обеспечивается строгостью постановки задач и применяемых математических методов, статистической обработкой полученных результатов, согласием расчетных и экспериментальных данных. Работа выполнялась с использованием современного оборудования НОЦ в направлении нанотехнологий НИУ ИТМО. Обработка экспериментальных данных проводилась на базе кафедры Нанотехнологий и материаловедения НИУ ИТМО.
Практическая ценность и реализация работы заключается в том, что предложена и технологически освоена линейка ПРЗД совместимая с серийно выпускаемым СЗМ "NanoEducator". Результаты работы активно используются в научно- образовательном процессе кафедры Нанотехнологий и материаловедения НИУ ИТМО в лабораторном и учебно-исследовательском практикуме при освоении курсов «Пучковые и зондовые методы исследования», «Сканирующая зондовая микроскопия и нанотехнологии».
Практическая ценность работы подтверждена Грантами фирмы Carl Zeiss в 2009 и 2011 годах. Часть работы выполнена в рамках реализации и при финансовой поддержке ФЦП "Научные и научно-педагогические кадры инновационной России" на 2009 - 2013 годы (НК-556П/89, ГК П557) и грантом Министерства образования и науки № 2.1.2/4187 «Многофункциональные нанозонды для сканирующей зондовой микроскопии, спектроскопии и литографии (СЗМ-С-Л): концепция, технология, характеризация, применение».
Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на: IV-VII Всероссийских научных конференциях молодых ученых (Санкт-Петербург, 2007-2010), Proceedings of International Workshop "Advanced Laser Technologies", (Hungary, Siofok, 2008), XXXVIII и XXXIX научных и учебно-методических конференциях ППС СПбГУ ИТМО (Санкт-Петербург, 2009-2010), 2-й Уральской школе молодых ученых. Современные нанотехнологии. Сканирующая зондовая микроскопия (Екатеринбург, 2011).
Публикации. По материалам диссертационных исследований опубликовано 14 работ, из них 8 - в журналах из перечня ВАК и 6 сообщений в материалах конференций.
Структура и объем диссертации. Диссертация состоит из введения, 3 глав, заключения и библиографического списка из 67 наименований. Основной текст работы изложен на 112 страницах, включает в себя 4 таблицы и 66 рисунков.
Похожие диссертации на Технология создания и исследование пьезорезонансных зондовых датчиков для сканирующего зондового микроскопа
-