Введение к работе
Актуальность работы. В настоящее время в РФ переработку семян подсолнечника осуществляют более 200 маслодобывающих предприятий, из которых 14 маслоэкстракционных заводов (МЭЗ) имеют производительность более 1000 тонн в сутки по семенам подсолнечника, 12 заводов перерабатывают от 500 до 1000 тонн в сутки и 75 заводов – более 100 тонн в сутки. Подготовка семян подсолнечника к извлечению масла на большинстве предприятий ведется по типовой схеме рушально-веечного цеха (РВЦ). Обрушивание семян и разделение рушанки осуществляется в рушально-веечном агрегате, состоящем из бичевой семенорушки и семеновеечной машины Р1-МС-2Т, которая включает рассев и пятиканальную аспирационную камеру, где отделяют частички лузги наклонным воздушным потоком с получением ядровой фракции, недоруша, перевея и лузги. На участке контроля перевея и лузги используются семеновеечные машины, при этом рециклический поток перевея в РВЦ составляет около 20 % от производительности завода по перерабатываемым семенам, а количество отводимой из производства лузги 15–17 %. Основные безвозвратные потери масла с лузгой формируются на этапе разделения рушанки наклонным воздушным потоком в аспирационной камере семеновеечной машины за счет выноса частичек ядра в лузгу, достигающего 1 % и более при нормативных потерях не более 0,4 %. Только за счет выноса ядра с лузгой на 0,5 % сверх норматива МЭЗ производительностью 500 тонн в сутки теряет с лузгой не менее 82,8 тонн масла в год, что в стоимостном выражении составляет 2,48 млн рублей (при оптовой стоимости 30 рублей за 1 кг масла).
Теоретические основы процесса разделения воздушным потоком зернового сырья, в том числе масличных семян и их компонентов, а так же разработка соответствующего оборудования отражены в работах А.Я. Малиса, А.Д. Демидова, А.Б. Демского, В.Ф. Веденьева, Е.В. Семенова, В.А. Масликова, В.В. Белобородова и ряда других ученых.
Разработка ресурсосберегающих технических решений по совершенствованию действующего технологического оборудования и создание высокоэффективного пневмосепаратора, обеспечивающие снижение выноса ядра в лузгу и исключение из схемы РВЦ контрольных операций фракций перевея и лузги, основанные на экспериментальном исследовании аэродинамических свойств частиц рушанки семян подсолнечника, процесса их разделения вертикальным воздушным потоком и математическом моделировании стесненного движения частичек рушанки в аэросепараторе, являются актуальными задачами.
Научная работа выполнялась по гос. контракту №П424 «Научное обоснование и разработка ресурсосберегающих технических решений по совершенствованию рушально-веечного цеха маслоэкстракционного завода» (научный руководитель аспирант Глущенко Г.А.) в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы, по хоз. договору №6.34.03.03 - 2008 г. «Разработка технологических решений (раздел ТХ) для маслоэкстракционного завода производительностью 1000 т/сутки семян подсолнечника» с ООО "Инпротех" (проектный институт) и при материальной и финансовой поддержке ООО «Экотехпром», которое безвозмездно предоставило промышленный аэросепаратор МКА-400 для проведения исследований.
Цель и задачи диссертационной работы. Цель работы – научно-техническое обоснование процесса разделения фракционированной рушанки семян подсолнечника вертикальным воздушным потоком и совершенствование пневмосепаратора, обеспечивающие снижение выноса ядра в лузгу, исключающие образование фракции перевея и участок контроля лузги в типовой схеме РВЦ.
В соответствии с поставленной целью сформулированы следующие задачи исследования:
экспериментально изучить скорость витания компонентов рушанки семян подсолнечника заводской смеси;
определить в производственных условиях типового РВЦ основные параметры работы семеновеечной машины Р1-МС-2Т – нагрузку по рушанке для каждого раздела пятиканальной аспирационной камеры, ее фракционный и компонентный состав, необходимые для обоснования режимов работы при испытании в стендовых условиях промышленного аэросепаратора МКА-400;
экспериментально исследовать в стендовых условиях аэродинамические условия работы промышленного аэросепаратора МКА-400 и его усовершенствованную конструкцию;
экспериментально исследовать процесс отделения лузги из рушанки воздушным потоком в усовершенствованном аэросепараторе в стендовых условиях;
разработать математическую модель стесненного движения частичек рушанки в приемном устройстве и вертикальном пневмосепарирующем канале аэросепаратора и определить его рациональные конструктивно-технологические параметры;
разработать методику инженерного расчета аэросепаратора для разделения рушанки;
разработать технические решения по совершенствованию пневмосепараторов для разделения рушанки и семеновеечной машины Р1-МС-2Т.
Научная новизна. Экспериментально определена средняя скорость витания частичек лузги и ядра рушанки семян подсолнечника заводской смеси, а также сечки, недоруша и масличной пыли. Впервые получены зависимости для расчета средней скорости витания от среднего диаметра частиц лузги и ядра различных фракций.
Выполнены экспериментальные исследования функционирования усовершенствованного аэросепаратора в стендовых условиях. Получена зависимость для расчета потерь полного давления и исследовано влияние основных конструктивно-технологических параметров на эффективность отделения лузги из фракций рушанки воздушным потоком.
Развиты представления о механизме движения частичек рушанки в приемном устройстве и пневмосепарирующем канале с учетом их стесненного движения на основании экспериментальных исследований и разработанной позонной математической модели, учитывающей начальную скорость движения частичек, удельную нагрузку, угол наклона приемного устройства, силы тяжести и трения, а так же аэродинамического сопротивления воздушного потока. Полученные результаты позволили рассчитать среднюю скорость и определить путь, пройденный частичками при стесненном движении в приемном устройстве и вертикальном пневмосепарирующем канале, а также установить рациональные конструктивно-технологические параметры усовершенствованного аэросепаратора.
Математическая модель идентифицирована по собственным экспериментальным данным, которые получены киносъемкой.
Практическая значимость. Разработаны технические решения, новизна которых подтверждена одним патентом на изобретение РФ №2397027 «Пневмосепаратор для отделения аэроуносимых частиц» и двумя патентами на ПМ РФ №78794 «Пневмосепаратор» и №88020 «Аэросепаратор для отделения лузги».
Показано, что модернизация семеновеечной машины с использованием разработанных технических решений позволяет исключить образование фракции перевея и соответственно исключить участки контроля перевея и лузги из схемы РВЦ.
Разработана методика инженерного расчета аэросепаратора для разделения рушанки, в основу которой положена полученная математическая модель сложного движения частичек рушанки.
Технические разработки (патенты РФ №2397027, №78794) соответственно удостоены серебряных медалей на XIV и XV Международном салоне изобретений и инновационных технологий «АРХИМЕД – 2011» и «АРХИМЕД – 2012» г. Москва. Автор удостоен дипломом 1-й степени и награжден золотой медалью на краевом конкурсе «На лучшую научную и творческую работу преподавателей, аспирантов и студентов высших учебных заведений Краснодарского края за 2011 г.»
Технические разработки использованы: ООО «Инпротех» (проектный институт) в рабочем проекте маслоэкстракционного завода производительностью 1000 т/сут по семенам подсолнечника для ЗАО «Сорочинский комбинат хлебопродуктов» Оренбургская обл.; ООО «Экотехпром» в предпроектном решении «Разработка технических предложений по реконструкции рушально-веечного цеха» для Усть-Лабинского ЭМЭК ЗАО «Флорентина» и в технических предложениях по реконструкции РВЦ, разработанных в рамках ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009 – 2013 годы для Бейсугского маслозавода
ЗАО фирмы «Агрокомплекс».
Апробация работы. Основные результаты исследований докладывались и обсуждались на 9-й и 11-й международных конференциях «Масложировая индустрия» (г. Санкт-Петербург, 2009, 2011 гг.); VII Международной научно-технической конференции «Техника и технология пищевых производств» (г. Могилев, 2009 г.); X Международной конференции молодых ученых «Пищевые технологии и биотехнологии» (г. Казань, 2009 г.); Всероссийской конференции с элементами научной школы «Инструментальные методы для исследования живых систем и пищевых производств» (г. Кемерово, 2009 г.); IV Международной научно-практической конференции «Инновационные направления в пищевых технологиях» (г. Пятигорск, 2010 г.); V Международной научно-практической конференции молодых ученых и студентов «Интеллектуальный потенциал молодежи XXI века в инновационном развитии современного общества» (г. Усть-Каменогорск, Казахстан, 2012 г.); VII Международной конференции «Масложировой комплекс России: Новые аспекты развития» (г. Москва, 2012 г.), 5-й Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых с международным участием «Технологии и оборудование химической, биотехнологической и пищевой промышленности» (г. Бийск, 2012 г.).
Публикации результатов исследований. Основные положения диссертационной работы опубликованы в 17 научных работах, из них 5 статей в журналах рекомендованных ВАК, одна статья в иностранном издании; получены патенты РФ: один на изобретение и два на полезную модель.
Объем и структура диссертации. Диссертация состоит из введения, пяти глав, заключения, приложений и списка литературных источников из 126 наименований. Общий объем диссертации изложен на 147 страницах, содержит 46 иллюстраций и 3 таблицы.