Введение к работе
Актуальность темы.
В настоящее время интенсивно развиваются области науки и техники, связанные с созданием новых оптических устройств на основе различных наноструктур. К числу таких устройств, потребность в которых ощущается в разных областях науки и техники, относятся, в частности, однофотонные детекторы [A1], лазеры на квантовых точках [A2], а также усилители и детекторы терагерцевого (ТГц) излучения [A3]. Данные устройства в своей работе эксплуатируют те или иные свойства определенных наноструктур. Особый интерес вызывает исследование оптического отклика наноструктур в присутствии внешних электрических и магнитных полей. Внешние поля позволяют эффективно управлять оптическим откликом, что может, в частности, быть использовано для создания новых оптоэлектронных приборов с управляемыми характеристиками.
Важнейшей рабочей характеристикой оптических устройств на основе наноструктур является расстояние между квантованными энергетическими уровнями. Как правило, это расстояние соответствует инфракрасному или ТГц спектральным диапазонам. В настоящее время создано достаточно много различных, в том числе и однофотонных, детекторов инфракрасного излучения на основе наноструктур. Управление характеристиками такого устройства, в частности, рабочими частотами, является важной проблемой при его конструировании. Внешнее магнитное поле, приложенное к наноструктурам, вызывает гибридизацию электронного энергетического спектра и, следовательно, позволяет эффективно управлять параметрами оптических наноустройств. Кроме того, рассеяние на примесях и фононах может существенно влиять на эффективность работы подобных устройств, а также изменять их рабочие характеристики, в частности, изменять коэффициент поглощения (усиления) и вызывать переходы на других резонансных частотах. Поэтому изучение влияния внешних полей и процессов рассеяния на внутризонное поглощение электромагнитного излучения наноструктурами является важной проблемой оптики наносистем.
Другой актуальной проблемой инфракрасной и ТГц оптики наноструктур является создание коммерчески доступных источников и детекторов ТГц излучения, обладающих компактностью и способностью работать в непрерывном режиме при комнатной температуре [A3]. Такие устройства востребованы в физике, химии, медицине, биологии, системах безопасности, информационных технологиях. При этом ТГц диапазон электромагнитного спектра остается наиболее слабо исследованной частью электромагнитного спектра из-за сложности детектирования и генерации излуче-
ния в данном диапазоне. До сих пор прогресс в технологиях его применения затруднен в связи с недостатком подходящих источников и детекторов. В настоящее время в качестве источников ТГц излучения используют лазеры на свободных электронах [A4], газовые молекулярные лазеры или ра- мановские лазеры с накачкой С02-лазером [A5], частотные умножители на диодах Шоттки [A6], лазеры из p-Ge с горячими дырками [A7], квантовые каскадные лазеры и усилители [A8] и др. Однако, имеющиеся источники обладают рядом существенных недостатков. Такими недостатками являются, в частности, в зависимости от конкретного устройства, необходимость мощной накачки, низкие рабочие температуры, недолговечность источников, малая мощность источников, большие габариты и др. Наибольший прогресс в получении ТГц излучения был достигнут, по-видимому, с помощью квантовых каскадных лазеров. Однако в этих приборах очень сложно достичь необходимой инверсной заселенности при высоких температурах. Хотя смешение инфракрасных волн в таком лазере позволяет в принципе добиться генерации при комнатной температуре [A9], но мощность такого излучения пока очень мала.
Усилитель и детектор ТГц излучения на основе полупроводниковой сверхрешетки теоретически обладает необходимыми требованиями (компактность, работа при комнатных температурах в непрерывном режиме) и мог бы стать перспективной альтернативой квантовым каскадным лазерам. Однако, до сих пор, несмотря на ожидания исследователей (начиная с [A10]), не удалось создать стабильно работающего устройства подобного рода на основе сверхрешетки, что связано с возникновением электрических нестабильностей (подобных нестабильностям, возникающим при эффекте Ганна в объемных полупроводниках) в классической схеме работы усилителя, основанной на эксплуатации режима отрицательной дифференциальной проводимости (ОДП) для усиления [A11]. Таким образом, проблема создания усилителя (детектора) ТГЦ излучения на основе сверхрешетки является актуальной проблемой и требует для своего решения новых теоретических подходов.
Таким образом, с точки зрения создания новых приборов оптоэлек- троники с управляемыми характеристиками, работающих в инфракрасном и ТГц частотных диапазонах, исследование спектральных оптических свойств полупроводниковых наноструктур является одним из важнейших направлений современной оптики.
Цель диссертационной работы заключается в теоретическом исследовании спектральных оптических свойств полупроводниковых наноструктур в ТГц и инфракрасном спектральных диапазонах в связи с проблемой создания новых источников и детекторов электромагнитного излучения.
Для достижения поставленной цели необходимо было решить следующие задачи:
разработать общий теоретический метод анализа оптического отклика наноструктур с квадратичными гамильтонианами, при наличии внешнего произвольно направленного магнитного поля;
получить аналитические выражения для коэффициентов поглощения (усиления) рассматриваемых наноструктур (квантовые точки, проволоки, цилиндры, сверхрешетки) и провести их детальный анализ;
теоретически исследовать спектральные свойства изучаемых наноструктур в инфракрасном и ТГц частотных диапазонах;
проанализировать влияние рассеяния на ионизованных примесях и фононах на оптические свойства наноструктур;
изучить влияние инфракрасного излучения на транспортные свойства (в частности, на эффект квантования кондактанса) квазиодномерных наноструктур;
исследовать параметрический и нерезонансный механизмы усиления в сверхрешетке, находящейся под воздействием переменного поля ТГц излучения;
проанализировать особенности оптического отклика сверхрешетки в случае, когда взаимодействие электронов сверхрешетки с полем накачки является квазистатическим;
изучить неустойчивости волн зарядовой плотности (ВЗП) в сверхрешетке в присутствии ТГц электромагнитного поля;
изучить эффект генерации постоянного тока в сверхрешетке, находящейся в чисто переменном бихроматическом поле с произвольным соотношением частот двух полей;
Научная новизна полученных результатов заключается в следующих положениях:
-
-
Впервые в рамках единого теоретического подхода, основанного на каноническом преобразовании фазового пространства системы, изучен оптический отклик наноструктур с квадратичными гамильтонианами. Важным достоинством такого подхода является простота нахождения матричных элементов оператора возмущения для системы, находящейся во внешнем электромагнитном поле;
-
Показан резонансный характер взаимодействия электронов наноструктур с электромагнитным излучением инфракрасного и ТГц частотного диапазона, детально исследовано влияние анизотропии потенциала конфайнмента и внешнего магнитного поля на положение, форму и структуру резонансных пиков;
-
Выяснено, что влияние рассеяния на оптических фононах в кван-
товых точках приводит к возникновению мультиплетной структуры резонансных пиков;
-
-
Показано, что рассеяние на примесях в квантовых точках и проволоках ведет к появлению дополнительных резонансных пиков различной формы, амплитудой которых можно эффективно управлять с помощью магнитного поля.
-
Изучено влияние внешнего инфракрасного излучения на кондактанс квантовых проволок. Показано, что электромагнитное излучение оказывает сильное влияние на кондактанс только в окрестностях порогов ступеней квантования кондактанса.
-
Исследованы спектральные свойства полупроводниковй сверхрешетки, помещенной в бихроматическое электромагнитное поле, при наиболее общем соотношении частот поля накачки и пробного поля с учетом сдвига фаз между ними. Показано, что в малосигнальном пределе формулы для тока всегда состоят из двух слагаемых, одно из которых, зависящее от фазы, обусловлено когерентным, а другое, не зависящее от фазы, - некогерентным взаимодействием минизонных электронов с полем накачки. Установлено, что получить усиление пробного поля возможно только в случае, если оно является целой или полуцелой гармоникой поля накачки.
-
Разработана теория параметрического усиления ТГц излучения в сврехрешетке. В частности, показано, что физической причиной возникновения усиления на целых и полуцелых гармониках поля накачки является особый вид параметрического резонанса, вызванного брэгговским отражением минизонных электронов.
-
Разработан наглядный геометрический метод анализа с помощью простых формул в виде квантовых производных, позволяющий наглядным геометрическим способом, зная только статическую вольт-амперную характеристику сверхрешетки, определить возможность усиления гармоник квазистатического поля накачки и сам коэффициент усиления.
-
Показано, что квазистатическое поле накачки в сверхрешетке с умеренным легированием позволяет достичь усиления на гармониках поля накачки в условиях полного подавления доменных неустойчивостей.
-
Разработана универсальная аналитическая процедура для нахождения поведения различных физически важных переменных в квазистатическом пределе исходя из точного решения кинетического уравнения Больц- мана для сверхрешеток.
-
Найден и изучен спектр ВЗП в сверхрешетке, помещенной в ТГц электромагнитное поле. Показано, что в случае чисто переменного поля области нестабильностей ВЗП совпадают с областями абсолютной отрицательной проводимости (АОП). Сделаны оценки значений плазменной
частоты, приводящей к расширению областей нестабильностей ВЗП по сравнению с областями АОП. Выяснено, что конечность волнового вектора ВЗП приводит к незначительному расширению областей нестабильностей, которые, однако, не перекрываются полностью с областями усиления.
13. Теоретически исследован эффект возникновения постоянного тока в сверхрешетке, помещенной в чисто переменное ТГц бихроматическое поле с произвольным соотношением частот двух полей как в случае баллистического, так и диссипативного транспортных режимов. Установлено, что данный эффект имеет параметрическую природу и непосредственно связан с осцилляциями внутризонной энергии электрона. Показана возможность измерения компонент поглощения и, следовательно, благоприятных условий усиления, по измерениям выпрямленного тока.
Теоретическая и практическая значимость работы.
Полученные в работе результаты могут быть использованы для создания различных приборов оптоэлектроники с управляемыми параметрами, в частности, детекторов и усилителей инфракрасного и ТГц излучения, а также являются основой для понимания процессов взаимодействия электромагнитного излучения инфракрасного и ТГц частотных диапазонов с электронами наноструктур. Перечислим конкретные практически значимые результаты:
-
-
-
-
Установленная возможность управления поглощением инфракрасного излучения в наноструктурах с помощью магнитного поля может позволить изменять рабочие частоты и чувствительность устройств, основанных на квантовых точках, наноцилиндрах и проволоках, в частности, однофо- тонных инфракрасных детекторов и инфракрасных лазеров;
-
Развитый подход, основанный на каноническом преобразовании фазового пространства системы, может быть применен для теоретического исследования и других физических свойств систем с квадратичными гамильтонианами;
-
Влияние рассеяния на ионизованных примесях в наноструктурах может быть сильно уменьшено внешним магнитным полем, что позволяет избежать влияния негативных процессов рассеяния на оптические свойства квантовых точек и проволок;
-
Изученные спектральные свойства полупроводниковой сверхрешетки, помещенной в бихроматическое поле, позволяют предсказать те параметры системы, при которых принципиально возможно получить усиление ТГц излучения в условиях отсутствия разрушающих усиление нестабиль- ностей.
-
Проведенные предварительные эксперименты на частоте 10 ГГц [A12] показали реальность использования сверхрешетки как активной среды для
параметрического усиления, основанного на разработанной теории параметрического резонанса, обусловленного осцилляцией минизонной энергии электронов.
-
-
-
-
Разработанный геометрический метод анализа позволяет только исследуя статическую вольт-амперную характеристику сверхрешетки определить возможность усиления ТГц сигнала в условиях подавления неста- бильностей.
-
Измерения постоянного тока, возникающего в сверхрешетке при смешивании переменных полей ТГц частот, могут являться непрямым, но довольно мощным методом экспериментального исследования эффекта параметрического усиления.
Основные научные положения, выносимые на защиту.
-
-
-
-
-
Разработанный метод анализа оптического отклика наноструктур с квадратичными гамильтонианами;
-
Полученные аналитические зависимости поглощения инфракрасного и ТГц излучения электронами наноструктур от величины и направления магнитного поля, частоты и направления вектора поляризации излучения, параметров потенциала конфайнмента;
-
Изученные эффекты, связанные с влиянием на поглощение рассеяния на оптических фононах и ионизованных примесях;
-
Исследованное влияние электромагнитного излучения на кондактанс квантовых проволок, приводящее к уменьшению сопротивления системы в районе порогов квантования кондактанса;
-
Спектральная диаграмма поглощения (усиления) ТГц излучения полупроводниковой сверхрешеткой;
-
Разработанная теория параметрического резонанса, возникающего в сверхрешетке благодаря осцилляциям минизонной энергии электрона и предсказывающая возможность получения усиления ТГц излучения на целых и полуцелых гармониках поля накачки;
-
Развитый подход, позволяющий найти оптимальные условия для усиления ТГц излучения сверхрешеткой в случае квазистатического поля накачки, применяя только простой качественный анализ, основанный на наглядной геометрической интерпретации полученных формул.
-
Изученный эффект генерации постоянного тока в сверхрешетке, находящейся в чисто переменном бихроматическом поле накачки и позволяющий предсказать оптимальные условия усиления, исходя из простых измерений постоянного тока.
Апробация работы.
Основные результаты работы докладывались на 5-ом и 6-ом международных симпозиумах "Fullerenes and Atomic Clusters"(С.-Петербург, 2001,
2003); 10-ом, 15-ом и 18-ом международных симпозиумах "Nanostructures: Physics and Technology"(С.-Петербург, 2002, 2010; Новосибирск, 2007); международной конференции "Оптика, оптоэлектроника и технологии" (Ульяновск, 2002); всероссийском совещании "Нанофотоника" (Нижний Новгород, 2002); 33-ом и 34-ом всероссийских совещаниях по физике низких температур (Екатеринбург, 2003; Ростов-на-Дону - п. Лоо, 2006); 11-ой международной конференции по фононному рассеянию в конденсированных средах (С.-Петербург, 2004); международной конференции "XXV Dynamics Days Europe" (Берлин, Германия, 2005); 7-ой и 8-ой российской конференции по физике полупроводников (Москва-Звенигород, 2005; Екатеринбург, 2007); 28-ой международной конференции по физике полупроводников (Вена, Австрия, 2006); международной конференции по когерентной и нелинейной оптике "ICONO/LAT 2007" (Минск, Беларусь, 2007); совместной 32-ой международной конференции по инфракрасным и миллиметровым волнам и 15-ой международной конференции по терагерце- вой электронике (Кардифф, Великобритания, 2007); VII международной конференции "Лазерная физика и оптические технологии"(Минск, Беларусь, 2008); 32-ой международной конференции по теории конденсированного состояния (Лафборо, Великобритания, 2008); первом международном междисциплинарном симпозиуме "Физика низкоразмерных систем и поверхностей"(LDS-2008) (Ростов-на-Дону - п.Лоо, 2008); XIII международном симпозиуме "Нанофизика и наноэлектроника"(Нижний Новгород, 2009); минисимпозиуме "Superlattices and Terahertz Radiation" в рамках второго международного симпозиума "Neural Networks and Econophysics: from superconducting junctions to financial markets" (Лафборо, Великобритания, 2009); а также неоднократно обсуждались на семинаре в University of Oulu (Финляндия) и Loughborough University (Великобритания).
Личный вклад.
Большинство результатов диссертационной работы получены автором самостоятельно. В постановке некоторых задач и обсуждении результатов принимали участие научный консультант В.А.Маргулис и К.Н. Алексеев. В коллективных работах автору принадлежит существенный вклад в получении новых результатов. В процессе выполнения данной работы под научным руководством автора была подготовлена одна диссертация на соискание ученой степени кандидата физ.-мат. наук аспирантом Н.Н. Хва- стуновым.
Автор являлся руководителем грантов Президента Российской Федерации для поддержки молодых российских ученых - кандидатов наук (МК- 4804.2006.2, МК-2062.2008.2), в которых получена существенная часть результатов диссертации. Часть результатов была получена в рамках гран-
тов РФФИ (руководитель В.А. Маргулис, 2005-2010 гг.) и АВЦП "Развитие научного потенциала высшей школы"(руководитель В.А. Маргулис, 20092011 гг.), в которых автор принимал участие в качестве ответственного исполнителя.
Публикации.
Основные результаты диссертации опубликованы в 54 научных работах, в том числе в 25 статьях [1-25] в журналах, рекомендуемых ВАК.
Структура и объем диссертации. Диссертационная работа изложена на 290 страницах и состоит из введения, шести глав, заключения и библиографического списка, включающего 346 наименований.
Похожие диссертации на Инфракрасная и терагерцевая спектроскопия наноструктур
-
-
-
-
-
-
-
-
-
-
-
-
-
-