Содержание к диссертации
Введение
ГЛАВА I. Низкотемпературная динамика неупорядоченных твердых тел и методы ее изучения 19
ГЛАВА II. Теоретические основы описания процессов оптической дефазировки в неупорядоченных примесных твердотельных системах при низких температурах 35
2.1. Стандартная модель двухуровневых систем 36
2.1.1. Основные положения модели 36
2.1.2. Параметры двухуровневых систем 37
2.1.3. Законы распределения ДУС по внутренним параметрам 38
2.2. Стохастическая модель случайных прыжков 40
2.2.1. Основные положения стохастической модели некоррелированных случайных прыжков 40
2.2.2. Взаимодействие примесного центра с ДУС 41
2.2.3. Пространственное и ориентационное распределения ДУС 42
2.3. Модифицированная теория ФЭ в низкотемпературных примесных
стеклах 43
2.3.1. Основные положения модифицированной модели ФЭ в низкотемпературных стеклах 45
2.3.2. Случай двухимпульсного фотонного эхо 48
2.3.3. Сравнение со стандартной теорией фотонного эха 51
2.3.4. Результаты модифицированной теории фотонного эха и их обсуждение: зависимость кривых спада от величины минимального расстояния между хромофором и двухуровневыми системами 53
2.4. Модель мягких потенциалов и ее применение для описания
оптической дефазировки в примесных аморфных системах 57
2.4.1. Основные положения модели мягких потенциалов 57
2.4.2. Основные соотношения, описывающие оптическую дефазировку в модели мягких потенциалов 61
2.5. Основные выводы по Главе II 65
ГЛАВА III. Метод фотонного эха и его возможности при исследовании процессов спектральной динамики в примесных твердотельных неупорядоченных средах 67
3.1. Фотонное эхо 67
3.1.1. Общие принципы 67
3.1.2. Излучение когерентного ансамбля хромофорных молекул 69
3.1.3. Векторная модель Блоха-Фейнмана 69
3.1.4. Основная идея метода ФЭ 73
3.2. Двух и трех импульсное фотонное эхо 75
3.3. Аккумулированное фотонное эхо 79
3.4. Некогерентное фотонное эхо 84
3.5. Выводы по главе III 86
ГЛАВАIV. Экспериментальные основы спектроскопии примесного центра с устранением временного и ансамблевого усреднений 87
4.1. Фотонное эхо и его применение для изучения динамики неупорядоченных твердотельных веществ 87
4.1.1. Двухимпулъсное фотонное эхо 89
4.1.2. Трехимпулъсное фотонное эхо 91
4.1.3. Некогерентное фотонное эхо 91
4.2. Экспериментальная техника фотонного эха и методика измерений 95
4.2.1. Лазерная система для генерации сигналов некогерентного ФЭ 95
4.2.2. Лазерная система для генерации импульсов пикосекундной длительности 96
4.2.3. Экспериментальные установки фотонного эха 97
4.2.4. Методика измерений 101
4.2.5. Методика приготовления образцов 105
4.3. Экспериментальная техника спектроскопии одиночных молекул и методика измерений 110
4.3.1. Применение метода спектроскопии одиночных молекул для изучения динамики неупорядоченных твердотельных веществ ПО
4.3.2. Регистрация спектров одиночных молекул в стеклах при низких температурах 113
4.3.3. Экспериментальная установка для регистрации спектров одиночных молекул 116
4.3.4. Методика приготовления образцов 119
4.3.5. Особенности регистрации спектров одиночных молекул в примесных стеклах 122
4.4. Выводы по главе 4 128
ГЛАВА V. Исследования оптической дефазировки в примесных органических стеклах и полимерах методом фотонного эха в широком диапазоне низких температур 130
5.1. Сравнение данных, полученных методом НФЭ, с данными, полученными методом 2ФЭ 131
5.2. Анализ данных, измеренных методом НФЭ, для резоруфина в-и d6-этаноле 135
5.2.1. Анализ вклада спектральной диффузии 138
5.2.2. Анализ вклада в оптическую дефазировку, обусловленного взаимодействием с НЧМ. 151
5.2.3. Эффект дейтерирования 157
5.2.4. Выводы по анализу данных дляp/d-э ир/й6-э 161
5.3. Исследования методами НФЭ и 2ФЭ 162
5.3.1. Общий обзор экспериментальных результатов, полученных методами НФЭ и 2ФЭ для шести неупорядоченных примесных систем 163
5.3.2. Анализ данных для низких температур 171
5.3.3. Модельные расчеты температурной зависимости в рамках модифицированной теории ФЭ в низкотемпературных стеклах 173
5.3.4. А нализ данн ых для области промежуточн ых температур 176
5.4. Анализ высокотемпературных данных с учетом спектра НЧМ 178
5.5. Анализ данных с использованием модели мягких потенциалов 183
5.5.7. Основные соотношения, описывающие уширение линий, используемые при анализе данных в рамках модели МП 183
5.5.2. Результаты модельных расчетов и их сравнение с экспериментом 184
5.6. Выводы по Главе V 188
ГЛАВА VI. Исследования динамики примесных органических полимеров методом спектроскопии одиночных молекул 190
6.1. Описание спектров одиночных молекул с использованием концепции моментов распределений 190
6.2. Результаты измерений спектров одиночных молекул ТБТ в аморфном полиизобутилене при Т = 2 К 191
6.2.1. Примеры спектров ОМ и их временная эволюция 192
6.2.2. Временное поведение спектров одиночных молекул, согласующееся с моделью ДУС 193
6.3. Модельные расчеты спектров одиночных молекул 197
6.3.1. Алгоритм расчета спектра одиночной молекулы 197
6.3.2. Выбор модельных параметров 198
6.3.3. Вклад ближних и дальних ДУС в спектр ОМ 199
6.4. Концепция моментов и особенности методики сравнения экспериментальных и теоретических результатов 202
6.5. Сравнение результатов модельных расчетов и экспериментальных данных по распределению моментов и ширин линий спектров ОМ 207
6.5.1. Анализ распределения моментов спектральных линий ОМ. 207
6.5.2. Дисперсия констант ы взаимодействия ДУС-хромофор и минимал ьное расстояние между примесным центром и ДУС 210
6.6. Спектры одиночных молекул в низкотемпературных стеклах и статистика Леви 212
6.7. Распределения ширин спектральных пиков и вклад квазилокальных низкочастотных колебательных мод в уширение спектров ОМ 214
6.8. Статистический анализ мультиплетной структуры спектров одиночных молекул 216
6.9. Характерные пространственные зоны взаимодействия двухуровневых систем с одиночной молекулой 217
6.10. Сравнение данных, полученных методами спектроскопии одиночных молекул и фотонного эха 224
6.11. Выводы по главе VI 227
Заключение 229
Список рисунков и таблиц 234
Список формул 238
Список использованной литературы
- Законы распределения ДУС по внутренним параметрам
- Излучение когерентного ансамбля хромофорных молекул
- Экспериментальная техника фотонного эха и методика измерений
- Анализ вклада в оптическую дефазировку, обусловленного взаимодействием с НЧМ.
Введение к работе
Аннотация. Разработан новый подход в изучении неупорядоченных твердотельных молекулярных сред и проведены систематические экспериментальные и теоретические исследования динамики аморфных органических стекол и полимеров в широком интервале низких температур (0,35 - 100 К). Развитый подход основан на получении информации о динамике изучаемой среды по спектрам примесных хромофорных молекул, внедряемых в исследуемый образец в качестве спектрального микроскопического зонда, и базируется на следующих двух экспериментальных принципах: 1) использование метода фотонного эха для измерений времен оптической дефазировки примесных хромофорных молекул в неупорядоченной матрице для исключения временного усреднения в ходе эксперимента. 2) детектирование большого числа спектров примесных одиночных хромофорных молекул и последующий статистический анализ измеренных спектров. Разработанный подход позволяет получать данные, отражающие общие свойства изучаемой среды, а не случайные параметры локального окружения, и сохранять при этом информацию о микроскопических параметрах среды. Его использование позволяет получать неискаженную усреднениями, информацию о динамических явлениях в молекулярных средах и устранить, таким образом, главную трудность существующих методов измерений для диагностики неупорядоченных сред. Проведены систематические исследования процессов спектральной диффузии и оптической дефазировки в аморфных органических стеклах и полимерах с использованием развитого экспериментального подхода и совершенствованной теоретической модели спектральной динамики низкотемпературных стекол. Получена новая информация о спектральной динамике аморфных органических сред в широкой области низких температур, которая существенно расширяет уровень понимания этого явления.
Актуальность темы. В настоящее время в быту, технике и научных исследованиях все большее применение находят твердотельные материалы и
структуры на основе неупорядоченных органических сред. Это разнообразные полимеры, включая такие перспективные материалы, как сопряженные полимеры, дендримеры, широкий круг органических стекол, аморфные полупроводники и структуры на их основе и др. К неупорядоченным органическим средам относится также большинство нанообъектов и наноструктур органической природы, интерес к которым в последнее время резко возрос, так как они являются одними из основных элементов бурно развивающихся в наше время нанотехно-логий. К упомянутым системам следует отнести и самые разнообразные биологические среды и структуры, изучение и использование которых является одним из важных направлений современной науки и техники. Неупорядоченные органические среды являются перспективными объектами для создания новых материалов и приборов с необычными свойствами. Так, например, в настоящее время ведутся интенсивные разработки в области молекулярной микроэлектроники на основе органических материалов. Широкое применение на практике и необходимость в создании новых материалов и структур на основе неупорядоченных органических веществ делает актуальным глубокое изучение их фундаментальных свойств. Большинство из этих свойств, такие как тепловые, механические, электрические, химические, оптические, спектральные и др., определяется внутренней динамикой вещества. Поэтому исследования динамических процессов в неупорядоченных молекулярных средах весьма актуальны и важны как для развития науки о молекулярных твердотельных средах, так и для развития новых технологий, основанных на разработке и использовании органических веществ со сложной структурой.
Основные цели диссертационной работы. До последнего времени основные исследования в области динамики твердотельных сред были направлены на изучение высоко упорядоченных кристаллических веществ. В результате этих исследований в настоящее время микроскопическая природа основных элементарных возбуждений в кристаллах в общих чертах известна. Совершенно иная ситуация имеет место с пониманием основ динамики неупорядоченных твердотельных (в частности, органических) сред. Несмотря на значительные
усилия исследователей, большинство вопросов принципиального характера в этой области остаются открытыми. Так, например, одной из наиболее серьезных проблем при описании свойств неупорядоченных сред является отсутствие информации о микроскопической природе элементарных низкочастотных возбуждений в этих средах. До сих пор не развита теория динамических явлений в неупорядоченных молекулярных средах, позволяющая описывать всю совокупность имеющихся экспериментальных результатов. Существующие модели имеют ограниченную область применимости и в большинстве случаев носят чисто феноменологический характер. Одной из основных причин указанного обстоятельства является малая пригодность традиционных экспериментальных методов для получения информации о свойствах неупорядоченных твердотельных сред. Это объясняется значительной дисперсией локальных параметров таких сред, в результате чего традиционные методы дают лишь сильно усредненные данные об изучаемом веществе, что приводит к существенным искажениям и потерям информации. Кроме того, большинство существующих теоретических подходов в описании динамики твердотельных сред, было разработано, в основном, для изучения кристаллов, и для описания неупорядоченных сред, в которых отсутствует симметрия и порядок в расположении молекул, эти подходы малоприменимы. Поэтому для достижения существенного прогресса в нашем понимании основных динамических явлений в неупорядоченных органических средах необходимо было разработать принципиально новые методы экспериментального изучения динамических явлений в указанных средах, которые должны существенно увеличить объем получаемой информации и устранить ее искажения. Необходимо было развить новые подходы также в теоретическом описании динамики неупорядоченных твердотельных сред.
Природа динамических процессов в неупорядоченных средах существенно зависит от температуры. Согласно имеющимся экспериментальным данным и предложенным моделям при Т < 2-3 К динамика неупорядоченных твердотельных сред в основном определяется туннелирующими двухуровневыми системами. При более высоких температурах начинает преобладать вклад низкочастотных квазилокальных колебательных мод. Согласно современным представ-
лениям эти моды проявляются в довольно широком диапазоне температур (от 2-3 К и до десятков градусов Кельвина), которые принято называть промежуточными. При более высоких температурах становится существенным взаимодействие между низкочастотными энергетическими возбуждениями среды. Описывать динамику неупорядоченных твердотельных систем на языке элементарных энергетических возбуждений в таких случаях уже не удается.
К началу настоящей работы было выполнено большое количество исследований по низкотемпературной динамике неупорядоченных сред как неорганической, так и органической природы. Основная часть исследований была посвящена исследованиям параметров и природы туннелирующих двухуровневых систем при Т<2-3 К. Вопрос о роли низкочастотных квазилокальных колебательных мод при более высоких температурах был практически не исследован. Выполненные исследования показали, что параметры, описывающие динамические процессы в органических средах, могут заметно отличаться от соответствующих параметров для неорганических сред. Учитывая необходимость расширения наших знаний о динамике сложных неупорядоченных твердотельных систем и важность изучения свойств органических веществ было решено посвятить данную работу исследованиям динамики органических неупорядоченных веществ (стекол, полимеров). Основные усилия были направлены на исследования природы и параметров малоизученных низкочастотных квазилокальных колебательных мод в указанных веществах. Для получения информации о внутренней динамике изучаемой среды была использован метод спектроскопии примесных центров. В данном случае это были хромофорные молекулы, поглощающие свет в выбранном диапазоне спектра, и внедряемые в изучаемую среду, прозрачную в этом диапазоне, в качестве спектральных зондов. Эффективность этого метода, как хорошо известно, объясняется тем, что оптические спектры примесных молекул чрезвычайно чувствительны к параметрам их окружения и содержат информацию о локальной динамике среды.
Для исследования сверхбыстрой динамики, присущей квазилокальным колебательным модам и быстрым переходам в двухуровневых системах, было необходимо в первую очередь устранить временное усреднение при измерениях
оптических спектров примесных молекул и существенно расширить температурный диапазон измерений. Кроме того, было необходимо устранить усреднение по ансамблю примесных молекул. Поэтому в качестве рабочих методов были выбраны метод фотонного эха и метод спектроскопии одиночных молекул. Однако эти методы мало применялись для целей исследования динамики неупорядоченных органических сред и нуждались в существенной доработке.
Вышесказанное объясняет выбор основных целей диссертации, которые можно сформулировать следующим образом:
Разработка и совершенствование методов экспериментального изучения динамических процессов в неупорядоченных твердотельных средах, позволяющих: а) исключить ансамблевое и временное усреднение получаемых данных, присущее традиционным методам, б) значительно расширить температурный диапазон исследований.
Проведение систематических экспериментальных исследований динамических явлений в специально подобранных примесных неупорядоченных органических твердотельных системах в широком диапазоне низких температур (Т < 100 К) для получения новых данных о динамических процессах в неупорядоченных средах, в частности, для получения информации об изучаемых явлениях на микроскопическом уровне.
Для этого необходимо было развить следующие экспериментальные методы и теоретические модели:
о Развить метод фотонного эха для измерений времен оптической дефази-ровки в примесных органических неупорядоченных системах, с целью устранения усреднения по времени в ходе измерений и существенного повышения временного разрешения метода, для того, чтобы значительно расширить температурный диапазон измерений.
о Развить метод спектроскопии одиночных молекул для изучения динамики неупорядоченных твердотельных органических сред с тем, чтобы стало возможно получать информацию общего характера о свойствах изучаемых
систем, сохраняя при этом микроскопическую информацию об изучаемых процессах, содержащуюся в индивидуальных спектрах примесных хромофорных молекул.
о Совершенствовать существующую модель оптической дефазировки в примесных стеклах для расширения области ее применимости.
Научная новизна. Все полученные в работе результаты являются новыми, а развитые методики и подходы оригинальными.
Основные результаты работы изложены в заключении.
Вклад автора. Основные исследования выполнены в Институте спектроскопии РАН при использовании методик, разработанных автором, на экспериментальной установке, созданной под его руководством, и при его непосредственном участии.
Часть экспериментов, которая включает эксперименты по двухимпульсно-му фотонному эху при температурах ниже 4 К и эксперименты по спектроскопии одиночных молекул, выполнялась в Байройтском университете (Германия) по инициативе автора и с участием немецких коллег. При этом постановка задач осуществлялась лично автором, а анализ полученных результатов выполнялся им или под его руководством.
Постановка всех задач, за исключением сравнительного изучения двух примесных систем: террилен в полиэтилене и тетра-терт бутилтеррилен в поли-изобутилене, методами фотонного эха и спектроскопии одиночных молекул, предложенного Персоновым Р.И., осуществлялась автором.
Проведение всех экспериментов, интерпретация, обработка и теоретический анализ результатов осуществлялись либо автором самостоятельно, либо под его руководством и при активном участии.
На различных стадиях работы в исследованиях принимали участие сотрудники лаборатории электронных спектров молекул Института спектроско-
пии РАН профессор Р.И. Персонов, м.н.с. Н.В. Груздев, к.ф.-м.н. М.А. Кольченко, к.ф.м.-н. А.В. Наумов, студент кафедры квантовой оптики МФТИ А.В. Деев, профессора Д. Хаарер (D. Наагег) и Л. Кадор (L. Kador) и аспиранты С. Цилкер (S.J. Zilker) и М. Бауер (М. Bauer) из Байройтского университета (Германия), а также доктор Эли Баркай (Е. Barkai) из Мае сачу сетского технологического института (США). Автор выражает всем им искреннюю благодарность.
Практическая значимость работы.
Разработана методика и построена экспериментальная установка для диагностики сверхбыстрых процессов уширения спектральной линии в примесных твердотельных системах в широком диапазоне температур методом некогерентного фотонного эха. Методика основана на использовании в качестве шумового источника света широкополосного лазера и не требует применения сложных и дорогостоящих фемтосекундных лазеров. Разработанная методика позволяет измерять времена оптической дефазировки с близким к предельному временным разрешением (вплоть до 25-30 фс) в широком круге примесных органических веществ и получать информацию о процессах спектральной диффузии в наносекундном диапазоне времен.
Предложена методика идентификации сложной мультиплетной структуры спектров одиночных молекул в аморфных средах и определения их принадлежности различным молекулам, путем детектирования и анализа временной истории таких спектров. Разработанная методика существенно расширяет возможности спектроскопии одиночных молекул при исследованиях спектральной динамики примесных аморфных систем при низких температурах.
Предложена методика количественного описания сложной формы спектров одиночных молекул в примесных молекулярных системах и их статистического анализа на основе концепции моментов и кумулянтов. Методика позволяет получать информацию об общих динамических свойствах
изучаемой системы, которая содержится в индивидуальной структуре таких спектров, и в то же время сохранить при их анализе информацию о параметрах ближайшего окружения примесных молекул.
Основные научные положения, выносимые на защиту:
Новое научное направление - спектроскопия динамических процессов в неупорядоченных молекулярных твердотельных системах с устранением временного усреднения и усреднения по ансамблю примесных молекул. Методика исследований процессов оптической дефазировки и спектральной диффузии в примесных органических стеклах и полимерах в широком диапазоне низких температур.
Новый подход к исследованию динамики неупорядоченных твердотельных молекулярных систем, основанный на регистрации спектров большого количества одиночных хромофорных молекул и их последующем анализе. Разделение вкладов двух различных механизмов в формирование спектров хромофорных молекул в аморфных средах при низких температурах: вклада туннелирующих двухуровневых систем и вклада низкочастотных квазилокальных колебательных мод неупорядоченной матрицы. Новая микроскопическая информация о спектральной динамике изученных примесных аморфных систем, неискаженная ансамблевым усреднением и отражающая общие свойства изучаемых систем.
Получение новой информации о распределениях частотных сдвигов, обобщенной ширины, асимметрии и "пичковатости" спектров одиночных примесных молекул в примесной полимерной аморфной матрице при низких температурах путем анализа спектров с использованием моментов распределений.
Обнаружение наносекундной спектральной диффузии в аморфной стеклянной матрице и определение ее температурной зависимости. Экспериментальное подтверждение применимости модели мягких потенциалов для описания процессов уширения однородной бесфононной линии
в широком диапазоне низких температур.
Обнаружение и исследование эффектов дейтерирования в Сг^-группе замороженного этанола.
Экспериментальная оценка величины минимального расстояния между двухуровневыми системами и хромофорными молекулами в примесных аморфных полимерах из данных по фотонному эху и спектроскопии одиночных молекул при низких температурах.
Оценка величины эффективного вклада низкочастотных квазилокальных колебательных мод в общую ширину линии в спектрах одиночных хромофорных молекул в аморфном полимере при нескольких значениях низких температур.
Обнаружение дисперсии времен оптической дефазировки в ряде примесных неупорядоченных систем при низких температурах.
Экспериментальное подтверждение применимости статистики Леви для описания распределений первого и второго кумулянтов низкотемпературных спектров примесных одиночных молекул в полимерной аморфной матрице.
Апробация работы. Основные результаты работы систематически докладывались на Всероссийских и Международных конференциях:
2-ой Международной конференции: "Laser М2Р" (Гренобль, Франция, 1991 г.); XIV Международной конференции по когерентной и нелинейной оптике (Ленинград, Россия, 1991 г.); 2-ом Международном симпозиуме "Persistent Spectral Hole Burning: Science and Applications" (Монтерей, Калифорния, США, 1991 г.); 3-ем Международном симпозиуме "Spectral Hole-Burning and Luminescence Line Narrowing: Science and Applications" (Аскона, Швейцария, 1992 г.); 4-ом Международном симпозиуме: "Spectral Hole-Burning and Related Spectroscopies: Science and Applications" (Токио, Япония, 1994 г.); Австрийско-Израильско-Германском симпозиуме: "Dynamical Processes in Condensed Molecular Systems" (Баден, Австрия, 1995 г.); 54-ом Международном симпозиуме:
"Fast Elementary Processes in Chemical and Biological Systems" (Лилль, Франция, 1995 г.); 5-ом Международном симпозиуме: "Hole Burning and Related Spectroscopies: Science and Applications" (Брайнерд, Миннесота, США, 1996 г.); 8-ой Международной конференции: "Unconventional Photoactive Systems" (Нара, Япония, 1997 г.); 11-ой Международной конференции: "Dynamical Processes in Excited States of Solids" (Австрия, Миттельберг, 1997 г.); 6-ом Международном симпозиуме: "Hole Burning and Related Spectroscopies: Science and Applications" (Хортин, Бордо, Франция, 1999 г.); 7-ом Международном симпозиуме: "Hole Burning and Related Spectroscopies: Science and Applications" (Тайбей, Тайвань,
г.); ХХП-ом Всероссийском съезде по спектроскопии (Звенигород, Московская область, Россия, 2001 г.); ГХ-ой Международной конференции по квантовой оптике (Минск, Беларусь, 2002 г.); Международной конференции: "Luminescence and Optical Spectroscopy of Condenced Matter" (Будапешт, Венгрия,
г.); 8-ом Международном симпозиуме: "Hole Burning and Related Spectroscopies: Science and Applications" (Боземан, Монтана, США, 2003 г.); 14-ой Международной конференции: "Dynamical Processes in Excited States of Solids" (Крайстчерч, Новая Зеландия, 2003 г.); Х-ой Международной конференции по квантовой оптике (Минск, Беларусь 2004 г.); VIII-ом Германско-Российском семинаре: "Point Defects in Insulators and Deep-Level Centers in Semiconductors" (Санкт-Петербург, Россия, 2003 г.); ХІ-ой Международной конференции: "Phonon Scattering in Condensed Matter" (Санкт-Петербург, Россия, 2004 г.); Международной конференции посвященной памяти Р.И. Персоно-ва (Байройт, Германия, 2004 г.).
За развитие метода спектроскопии одиночных молекул для исследований низкотемпературной динамики неупорядоченных твердотельных сред автор награжден премией Президиума Российской Академии наук имени академика Д.С. Рождественского за выдающиеся достижения в области оптики и спектроскопии за 2003 г.
Публикации. Материалы диссертации отражены в 36 статьях в ведущих рецензируемых отечественных и международных журналах.
Список публикаций автора по теме диссертации:
1. N.V. Grazdev, E.G. Sil'kis, V.D. Titov, Yu.G. Vainer,
"Photon-echo study of ultrafast dephasing in amorphous solids in wide temperature region with incoherent light" II J. de Phys. IV, Colloque.C7, supplement to J. de Phys. Ill, Vol.1, pp. C7-439 - C7-442, 1991.
2. N.V. Grazdev, E.G. Sil'kis, V.D. Titov and Yu.G. Vainer,
"Ultrafast dephasing of resorufin in D-ethanol glass from 1.7 to 40K studied by incoherent photon echo" IIJOSA B, Vol.9, pp.941-945, (1992).
3. N.V. Grazdev and Yu.G. Vainer,
"Nanosecond spectral diffusion and optical dephasing in organic glasses over a wide temperature range: incoherent photon echo study of resorufin in D- and D6-ethanol" II J. Lumin., Vol.56, pp.181-196, (1993).
4. Ю.Г. Вайнер, H.B. Груздев,
"Динамика органических аморфных сред при низких температурах: Исследования резоруфина в d- и d^- этаноле при 1.7-35 К методом некогерентного фотонного эха. I. Эксперимент. Основные результаты" // Оптика и спектроскопия, том 76, № 2, ее. 252 - 258 (1994).
5. Ю.Г. Вайнер, Н.В. Груздев,
"Динамика органических аморфных сред при низких температурах: Исследования резоруфина в d- и d^- этаноле при 1.7-35 К методом некогерентного фотонного эха. П. Анализ результатов" // Оптика и спектроскопия,
том 76, № 2, ее. 259 - 269 (1994).
6. Ю.Г. Вайнер, Р.И. Персонов,
"Фотонное эхо в аморфных средах в условиях значительной дисперсии однородных ширин линий примесных центров" // Оптика и спектроскопия,
том 79, № 5, ее. 824 - 832 (1995).
7. Yu.G. Vainer, T.V. Plakhotnik, and R.I.Personov,
"Dephasing and diffusional linewidths in spectra of doped amorphous solids: comparison of photon echo and single molecule spectroscopy data for terrylene in polyethylene" II Chem. Phys.,vol.209, pp. 101- 110, (1996).
8. Yu.G. Vainer, R.I. Personov, S.Zilker and D.Haarer,
"Contributions of the different line broadening mechanisms in photon echoes and single molecule spectra in amorphous solids" II Мої. Cryst. Liq. Cryst, vol.291, pp.51-56, (1996).
9. S.J. Zilker, Yu.G. Vainer, D. Haarer,
"Line broadening mechanisms in spectra of organic amorphous solids: photon echo study of terrylene in polyisobutylene at subkelvin temperatures" II Chem.
Phys. Lett, v.273, pp.232-238 (1997).
S.J. Zilker, D. Haarer, Yu.G. Vainer, R.L Personov, "Temperature-dependent line broadening of chromophores in amorphous solids: differences between single-molecule spectroscopy and photon echo results" II J. Lumin., v.76/77, pp.157-160, (1998).
S.J. Zilker, D. Haarer, Yu.G. Vainer, A.V. Deev, V.A. КоГспепко, and R.L Personov,
"Fast dephasing in glasses induced by tunneling states and local modes" II Мої. Cryst. Liq. Cryst., v.314, pp.143-148, (1998).
S.J. Zilker, J. Friebel, D. Haarer, Yu.G. Vainer, R.L Personov, "Investigation of low temperature linebroadening mechanisms in organic amorphous solids by photon echo, hole-burning and single molecule spectroscopy" II Chem. Phys. Lett, v.289, pp.553-558, (1998).
S.J. Zilker, L. Kador, J. Friebel, Yu.G. Vainer, M.A. Kol'chenko, R.L Personov, "Comparison of photon echo, hole burning, and single molecule spectroscopy data on low-temperature dynamics of organic amorphous solids" II J. Chem. Phys., v.109, No.16, pp.6780-6790, (1998).
Yu.G. Vainer, M.A. Kol'chenko, A.V. Naumov, R.L Personov, S.J. Zilker, "Photon echoes in doped organic amorthous systems over a wide (0.35-100K) temperature range" II J. Lumin., v.86, No.3&4, pp.265-272 (2000).
A.V. Naumov, Yu.G. Vainer, S.J. Zilker,
"Nonexponential two-pulse photon echo decay in amorphous solids at low temperatures" II J. Lumin., v.86, No.3&4, pp.273-278 (2000).
16. IQ.F. Вайнер, M.A. Кольченко, Р.И. Персонов,
"Модель мягких потенциалов и однородная ширина спектральных линий примесных центров в молекулярных аморфных средах" // Журнал Экспериментальной и Теоретической Физики, т.119, вып.4, ее.738-748, (2001).
A.V. Naumov, Yu.G. Vainer, М. Bauer, S. Zilker, L. Kador, "Distributions of moments of single-molecule spectral lines and the dynamics of amorphous solids" II Phys. Rev. B, v.63, pp.212302(l-4) (2001).
A.V. Naumov, Yu.G. Vainer, M. Bauer, L. Kador,
"Moments of single-molecule spectra in low-temperature glasses: Measurements and model calculations" II J. Chem. Phys., v.116, Nol8, pp.8132-8138 (2002).
19. Yu.G. Vainer, M.A. Kol'chenko, A.V. Naumov, R.L Personov, S.J. Zilker, D.
Haarer,
"Optical dephasing in doped organic glasses over a wide (0.35-100K) temperature range: Solid toluene doped with Zn-octaethylporphine" II J. Chem. Phys.,
v.ll6,No20,pp.8959-8965 (2002).
20. A.V. Naumov, Yu.G. Vainer,
"Minimal distance between chromophore and two-level systems in amorphous solids: effect on photon echo and single molecule spectroscopy data" II J. Lu-min., v.98, No.l&4, pp.63-74 (2002).
21. M.A. Kol'chenko, Yu.G. Vainer, R.I. Personov,
"Optical dephasing in polymers and the soft potential model: Analysis of photon echo in doped PMMA" II J. Lumin., v.98, No.l&4, pp.375-382 (2002).
Ю.Г. Вайнер, M.A. Кольченко, А.В. Наумов, Р.И. Персонов, С.Дж. Цилкер, "Оптическая дефазировка в твердом толуоле, активированном цинк-октаэтилпорфином" // Физика твердого тела, том 45, вып. 2, ее. 215-221, (2003).
A.V. Naumov, Yu.G. Vainer,
"Modified model of photon echoes in low-temperature glasses: Effect of minimal distance between two-level systems and chromophore"// J. Phys. Chem. B, v.107, pp. 2054-2060,(2003).
24. Ю.Г. Вайнер, А.В. Наумов, M. Bauer, L. Kador,
"Динамика аморфных полимеров при низких температурах и временная эволюция спектров одиночных примесных молекул. I. Эксперимент" // Оптика и спектроскопия, том 94, № 6, ее. 926-935.
25. Ю.Г. Вайнер, А.В. Наумов, М. Bauer, L. Kador,
"Динамика аморфных полимеров при низких температурах и временная эволюция спектров одиночных примесных молекул. П. Модельные расчеты и анализ результатов" // Оптика и спектроскопия, том 94, № 6, ее. 936-948.
26. М. Bauer, L. Kador, A.V. Naumov, Yu.G. Vainer,
"Thermal activation of two-level systems in a polymer glass as studied with single-molecule spectroscopy" II J. Chem. Phys., v. 119, No 7, pp. 3836-3839 (2003).
27. E. Barkai, A.V. Naumov, Yu.G. Vainer, M. Bauer, L. Kador,
"Levy statistics for random single-molecule line shapes in a glass" II Phys. Rev. Lett, v. 91, No 7, pp. 075502 (1-4) (2003).
28. A.V. Naumov, Yu.G. Vainer, M. Bauer, L. Kador,
"Dynamics of a doped polymer at temperatures where the two-level system model of glasses fails: Study by single-molecule spectroscopy" II J. Chem. Phys. Vol. 119, No 12, pp. 6296-6301 (2003).
29. E.J. Barkai, Yu.G. Vainer, L. Kador, R.J. Silbey, L'evy distribution of single
molecule line shape cumulants in glasses II Abstracts of papers of the american
chemical society, Vol. 226, P. U286 (2003).
E. Barkai, A.V. Naumov, Yu.G. Vainer, M. Bauer, L. Kador, "Experimental evidence for Levy statistics in single-molecule spectroscopy in a low temperature glass: manifestation of long-range interactions" II J. Lumin., vol. 107, No 1-4, pp. 21-31 (2004).
Yu.G. Vainer, A.V. Naumov, M. Bauer, L. Kador,
"Dynamics of amorphous polymers in the temperature region 2 - 7 К where the standard model of low-temperature glasses begin to fail: studies by single molecule spectroscopy and comparison with photon echo data" II J. Lumin., vol. 107, No 1-4, pp. 287-297 (2004).
32. Ю.Г. Вайнер,
"Спектроскопия одиночных молекул и динамика неупорядоченных твердых тел" // Успехи физических наук, Том 174, № 6, ее. 679-683 (2004).
33. Yu.G. Vainer, A.V. Naumov, M. Bauer, L. Kador,
"Quasi-localized low-frequency vibrational modes of disordered solids. I. Study by photon echo" II Phys. Stat. Sol. B, v.241, No 15, pp.3480-3486 (2004).
A.V. Naumov, Yu.G. Vainer, M. Bauer, L. Kador, "Quasi-localized low-frequency vibrational modes of disordered solids. II. Study by single-molecule spectroscopy" II Phys. Stat. Sol. B, v.241, No 15, pp.3487-3492 (2004).
Ю.Г. Вайнер, A.B. Наумов, M. Bauer, L.Kador, E.Barkai, "Статистический анализ спектров примесных одиночных молекул и динамика неупорядоченных твердых тел. I. Распределения ширин, моментов и кумулянтов" // Оптика и спектроскопия, том 98, № 5, ее. 806-813 (2005).
Ю.Г. Вайнер, А.В. Наумов,
"Статистический анализ спектров примесных одиночных молекул и динамика неупорядоченных твердых тел. П. Проявление взаимодействия двухуровневых систем с примесными молекулами в зависимости от расстояния между ними" // Оптика и спектроскопия, том 98, № 5, ее. 814-819 (2005).
Законы распределения ДУС по внутренним параметрам
В данной главе приводятся основные положения теоретического подхода, используемого в настоящей работе для анализа полученных экспериментальных данных. Дается краткое описание стандартной модели ДУС, модели случайных прыжков и модели мягких потенциалов. Описываются развитые в работе теоретические модели, предназначенные для описания процессов оптической дефазировки в неупорядоченных примесных твердотельных системах при низких и промежуточных температурах. Это модифицированная модель ФЭ в низкотемпературных стеклах и модель ФЭ в примесных стеклах, основанная на модели мягких потенциалов. Первая модель была развита для расширения возможностей теории ФЭ в низкотемпературных стеклах Гевы (Е. Geva) и Скинне-ра (J.L. Skinner) [28] при описании процессов уширения в примесных стеклах с участием ДУС. Ее можно рассматривать как обобщение этой теории. Вторая модель была развита с целью описания процессов уширения с участием не только ДУС, но и квазилокальных низкочастотных колебательных мод (НЧМ) аморфной матрицы. Это было необходимо для увеличения температурного диапазона, в котором можно применять теорию. Все используемые в настоящей работе теоретические модели основаны на стохастическом подходе к описанию процессов уширения линий примесных хромофорных молекул в неупорядоченной матрице и модели некоррелированных случайных прыжков {sudden jump model) [29].
Помимо стохастического подхода в ряде работ (см., напр., работы Осадько [30, 31] и Силби (R.J. Silbey) [32]) разрабатывается динамический подход. Теории уширения линий примесного центра в стеклах, основанные на динамическом подходе, носят более общий характер. Однако для описания динамических свойств стекол при низких температурах чаще используются более простые выражения, полученные в рамках стохастических теорий. В данной работе использовались оба подхода: динамический - в случае рассмотрения взаимодействия хромофоров с НЧМ и стохастический - при рассмотрении процессов взаимодействия с ДУС. Стохастический подход выбирался по соображениям большей простоты в расчетах, а также там, где применение динамической теории не приводило, на наш взгляд, к существенно новым результатам.
Понятие ДУС, лежащее в основе данной модели [4, 5], было предложено как чисто феноменологическое. Предполагается, что этот вид элементарных низкоэнергетических возбуждений соответствует переходам атомов или молекул или их групп между двумя локализованными низколежащими изолированными уровнями на потенциальной поверхности вещества (переходы на внешние уровни внутри модели не рассматриваются). Эти уровни разделены потенциальным барьером, который преодолевается путем туннелирования с испусканием или поглощением фонона. В модели предполагается, что при низких температурах (Т 1 К) плотность состояний ДУС существенно превышает плотность состояний акустических фононов. Поэтому динамические процессы в стеклах, происходящие при таких температурах, определяются динамикой ДУС. Микроскопическая природа ДУС до сих пор не выяснена. Редким исключением являются несколько кристаллических систем с т.н. "хорошо определенными" ДУС (напр., примесные кристаллы бензойной кислоты [33]), в которых удается связать конкретную микроскопическую природу матрицы с параметрами ДУС. Интуитивное понимание природы ДУС облегчается при рассмотрении результатов работы [34], в которой была построена двумерная модель стекла, состоящего из шарообразных частиц ("атомов") двух размеров. На Рис. 2.1. показаны два варианта образования ДУС в таком гипотетическом стекле. В первом варианте ДУС состоит из одного атома, совершающего прыжки между двумя положениями равновесия, во втором - из группы атомов, совершающих прыжки совместно. Очевидно, что в реальных стеклах, в частности, в молекулярных стеклах, картина формирования ДУС будет сложнее и может значительно отличаться от вышеприведенной модели.
Здесь А - асимметрия ДУС и J - туннельный матричный элемент, который выражается через параметры двухъямного потенциала, описывающего ДУС: где Л - параметр туннелирования, т - эффективная масса ДУС, V - высота барьера, Йсоо - нулевая энергия, d - расстояние между ямами в конфигурационном пространстве (см. Рис. 2.2).
Таким образом, каждая ДУС характеризуется парой внутренних параметров А и J или А и Л. Следует отметить, что в ряде случаев ДУС характеризуют парой других параметров: энергией расщепления Е и полной скоростью релаксации ДУС К, где К, равно сумме скоростей переходов между уровнями \g) и \е) в обоих направлениях) [35]. Параметры Е и К связаны с параметрами А и J следующими соотношениями:
Здесь с - константа взаимодействия ДУС-фонон; к - постоянная Больцмана; yt (уі) и ц (ц) - поперечная (продольная) составляющие потенциала деформации и скорости звука, соответственно; рт - объемная плотность ДУС; h- постоянная Планка.
Необходимо отметить, что выражение (2.4) справедливо только при одно-фононном механизме взаимодействия ДУС с "фононной баней" и при условии отсутствия взаимодействия между ДУС. Вклады двухфононного [36], а также активационного механизмов релаксации (т.е. надбарьерных переходов) при низких температурах существенно ниже и в рамках стандартной модели низкотемпературных стекол не рассматриваются.
При описании низкотемпературной динамики стекол важную роль имеют принимаемые в теории законы распределения ДУС по параметрам. Одним из базисных предположений стандартной модели ДУС является утверждение о широком и равномерном распределении ДУС по параметрам А и А: или для параметров А и J: где Ро - нормировочный коэффициент:
Здесь Амакс, Лике, Лпш - предельные параметры модели, характеризующие диапазоны изменения параметров А и J. Данные пределы выбираются согласно модели так, что где Гэксп - наибольшее из реализуемых времен измерения. Таким образом, модель опускает те ДУС (формула 2.8), вероятность прыжков в которых пренебрежимо мала, поскольку их энергия расщепления существенно превышает энергию тепловых фононов, а также те "медленные" ДУС (формула 2.9), вероятность прыжка которых в течение времени эксперимента также чрезвычайно мала (более подробно см. [28]). Если значения указанных пределов выбраны правильно, ни одна из измеряемых величин модели не должна зависеть от них. Отметим, что предположение о распределениях вида (2.5, 2.6) было сделано на основе некоторых общих физических представлений о стекле и не может рассматриваться как единственно верное.
Как показывают результаты многочисленных исследований, стандартная модель ДУС хорошо описывает большинство наблюдаемых экспериментально проявлений внутренней динамики аморфных сред.
Излучение когерентного ансамбля хромофорных молекул
Можно видеть, что существование ненулевого радиуса приводит к изменению формы зависимости. Степенной закон описывает такие зависимости уже недостаточно адекватно. Строго говоря, указанный факт наблюдался уже также и при гмин = 0. Однако при гмин Ф 0 отклонение от степенной зависимости значительно больше (с ростом гмин отклонение увеличивается). В результате некоторое «эффективное» значение а зависит от температуры и температурного интервала. Тем не менее, вследствие широкой распространенности концепции Та, мы характеризуем температурную зависимость указанным законом. Для анализа мы везде выбираем температурный диапазон 0,4 - 4,5 К.
Рис. 2.6 показывает, что в случае гмин = 3 -г- 6 нм расчетная температурная кривая близка к зависимости а= 1,1. Полученные результаты позволяют сделать вывод о том, что существование ненулевого минимального радиуса взаимодействия хромофора и ДУС реально может быть причиной, почему обнаруженных в ФЭ-эксперименте значения а меньше рассчитанных в рамках теории Гевы и Скиннера. Полученные результаты показывают также, что эффективный наклон рассчитанной температурной зависимости уменьшается с ростом гмин и а может быть даже 1.
Модель мягких потенциалов (МП) (см., напр., [11], [49] и обзор [50]) была введена с целью расширения возможностей модели ДУС, как по диапазону температур, где она может быть применена, так и по числу рассматриваемых низкочастотных энергетических возбуждений. Согласно этой модели в аморфных средах при низких и промежуточных температурах, помимо длинноволновых акустических фононов, существуют квазилокальные низкоэнергетические возбуждения трех типов. Это туннелирующие ДУС, ответственные за универсальные свойства стекол при температурах ниже нескольких градусов Кельвина, а также резонансные системы (PC) и гармонические осцилляторы (ГО), обуславливающие свойства стекол при более высоких температурах. Все три типа возбуждений имеют общее происхождение - они реализуются в мягких атомных потенциалах (ДУС и PC в двухъямных, ГО - в одноямных) - и трактуются как движения групп атомов или молекул в локальных минимумах потенциальной поверхности. Потенциалы, в которых реализуются ДУС, PC и ГО, являются "мягкими", в том смысле, что внешние напряжения легко преобразуют их друг в друга.
Согласно модели МП, квазилокальные низкочастотные возбуждения в аморфных средах описываются гамильтонианом ангармонического осциллятора:
Здесь М - эффективная масса осциллятора, (х) - потенциальная энергия, описываемая полиномом четвертой степени: ) где Е0 - энергия порядка энергии связи атомов (молекул), образующих стекло, х- обобщенная координата, а- характерная длина, имеющая порядок меж атомного расстояния. Величины безразмерных параметров rj и Е, являются случайными, что обусловлено структурной неоднородностью среды. В модели предполагается, что распределение указанных параметров имеет вид [51]: при этом г,, « 1. Функция Ро(г\) обычно считается константой. Характерный масштаб безразмерной величины г/, определяющей высоту барьера между ямами в потенциале (2.36), описывается малым параметром теории rjL = \h2/2ma2E0) «10 2, где т - средняя масса атомов, образующих стекло. Масштаб энергий определяется величиной W, характеризующей спектр уровней в потенциале (2.36) при г/ = Е, = 0: W = E0r/L = квТс, где /VB - постоянная Больц-мана, а Тс - характеристическая температура, которая для различных веществ лежит в пределах 2-ПО К.
Форма потенциала (2.36) определяется относительной величиной параметров г/ и Е,. Он может быть как двухямным так и одноямным. Если асимметрия двухъямного потенциала значительно меньше, чем расстояние между уровнями в одной яме, то два нижних уровня в потенциале (2.36) образуют туннелирую-щую ДУС (Рис. 2.7а) с расстоянием между уровнями [52]
Как следует из приведенных данных, понятия о туннелирующих ДУС в модели МП и в стандартной модели ДУС, весьма близки. Так, например, распределение (2.40) отличается лишь логарифмическим множителем от соответствующей функции распределения (2.6), принятой в стандартной модели, которая в переменных Е ир может быть записана как:
В случаях, когда асимметрия двухъямного потенциала оказывается много больше расстояния между уровнями в одной яме (Рис. 2.76), основной вклад в кинетические явления будут вносить переходы между ямами над барьером посредством термической активации. Эти возбуждения в модели МП относят к резонансным системам. Распределение PC по асимметрии (которая в этом случае, как следует из (2.38), совпадает с энергией) и высотам барьеров имеет вид [54]
Скорость релаксации PC определяется выражением: где Ко - параметр, имеющий величину порядка 10 - 10 с" [55]. Е, , как легко можно убедиться, потенциал (2.36) является одноямным, и в нем могут возбуждаться только колебательные моды, которые в модели МП называют гармоническими осцилляторами (Рис. 2.7в). При этом если r/»r/L, то ангармонизм достаточно мал, и колебания являются практически гармоническими с расстоянием между уровнями Е = 2W\]J]IJ]L и плотностью состояний п(Е) ее Е [51]. При энергиях выше Еъ = 2,2WI А1 6, где A = 0,\69(W/kBTg), a Tg - температура стеклования, существенную роль начинает играть взаимодействие между ГО. Квазилокальные возбуждения в этом случае уже нельзя считать независимыми. Новые делока-лизованные гармонические моды характеризуются плотностью состояний п(Е) Е [56]. Перестройка плотности состояний ГО в результате их взаимодействия является, согласно модели МП, причиной появления в спектрах КР света бозонного пика при частотах а = а ъ=Еъ1%.
Экспериментальная техника фотонного эха и методика измерений
Экспериментальные реализации методов НФЭ и 2ФЭ, выполненных в данной работе, были описаны в публикациях [84, 85] В данной работе приводится лишь краткое описание принципиальных схем разработанных установок и лазерных систем, даются их основные параметры и разъясняются основные преимущества.
Элементарные оценки показывают, что для увеличения температурного диапазона измерений методом НФЭ в сторону высоких температур (до десятков градусов Кельвина) необходимое временное разрешение должно составлять не менее десятков фемтосекунд. Это было достигнуто разработкой специального широкополосного (шумового) лазера, принципиальная схема которого при
Это лазер на красителе с поперечной лазерной накачкой, построенный по безрезонаторной схеме. Спектр излучения такого лазера определяется спектром люминесценции используемого красителя и не имеет модовой структуры. Как показала специальная проверка, форма спектра разработанного лазера мало менялась от импульса к импульсу, что было весьма существенно для проводимых экспериментов. Для накачки красителя (спиртовой раствор родамина-6Ж) использовалось излучение второй гармоники самодельного твердотельного NcT :YAG -лазера, работающего в режиме модуляции добротности и генерирующего импульсы наносекундной длительности. Этот лазер состоял из работающего на одной поперечной моде генератора, двух усилителей и удвоителя частоты на кристалле DCDA. Энергия излучения импульса второй гармоники доходила до 80 мДж. Излучение второй гармоники с помощью цилиндрической линзы фокусировалось на кювету с красителем в виде тонкой полоски. Длительность излучения лазера накачки составляла 12 не, а длительность генерации широкополосного лазера была чуть больше ( 15 не). Ширина спектра генерации люминесцентного лазера могла регулироваться и составляла обычно 100 - 200 см" , энергия выходного излучения в импульсе доходила до 1 мДж.
Эта система использовалась в установке двухимпульсного пикосекундного ФЭ, ее схема приведена на Рис. 4.2. Она была сконструирована на базе промышленного аргонового лазера с синхронизацией мод (Coherent, Innova 200-10), который использовался для синхронной накачки лазера на красителе (Coherent 702-1 CD). Длительность выходного импульса лазера накачки составляла -150 пс.
Выходные импульсы лазера на красителе усиливались в самодельном двухкаскадном усилителе, представляющем собой две ячейки с красителем, накачиваемые 2-ой гармоникой излучения промышленного наносекундного твер __-Э дотельного -лазера (Spectrum SL404G). В качестве красителя исполь зовался спиртовой раствор родамина-6Ж. Спонтанная эмиссия на выходе усилителя устранялась с помощью специального поглотителя (иодид диэтилокса-дикарбоцианин). На выходе системы получались когерентные импульсы света, практически без подставки, длительностью не более 6 пс, с энергией в импульсе до 1 мДж.
Принципиальные схемы обеих установок для измерения сигналов ФЭ примерно одинаковы и поэтому изображены на одном рисунке (Рис. 4.3), а их основные характеристики сведены в Табл. 4.1.
В случае НФЭ временное разрешение, достигаемое с использованием созданной установки, оказывается несколько выше, чем оценка этого разрешения стандартным путем, по величине обратной ширины спектра излучения красителя. Кажущееся противоречие с оценками, сделанными на основании общепринятой методики, объясняется достаточно просто. Это связано с тем, что реальное временное разрешение метода НФЭ определяется не шириной функции автокорреляции светового источника, как это делается для упрощения во многих работах при грубых оценках временного разрешения метода, а минимально об-наружимым изменением в кривой спада при изменении величины световой задержки. При достаточно высоком отношении сигнал к шуму эта величина мо жет оказаться меньшей ширины функции автокорреляции.
В нашей установке для повышения точности определения малых изменений в кривых спада применена методика, предложенная в работе A.W. Wainer и Е.Р. Грреп (Novel transient scattering technique for femtosecond dephasing measurements, Optics Letters, Vol. 9, P. 53, 1983). Эта методика сводится к одновременной регистрации двух эхо сигналов - сигналов "левого" и "правого" ФЭ, как показано на Рис.4.4(a).
Кроме того, точность измерения упомянутого отношения в нашей установке повышается, из-за усреднения по огромному количеству "элементарных" ФЭ. Как показала специальная проверка, предельное временное разрешение созданной установки достигало величины 25-30 фс, при ширине функции авто корреляции 200-300 фс. Для иллюстрации сказанного на Рис.4.4(6) приведен пример одновременной регистрации сигналов НФЭ для левого и правого эха, выполненного при комнатной температуре в растворе родамина 110 в ПММА. Расстояние между максимумами, равное 140 фс, определяется величиной оптической дефазировки в этой системе и как видно из рисунка оно достаточно легко измеряется, несмотря на то, что оно меньше ширины функции автокорреляции шумового лазера.
Так называемое, эффективное характеристическое время измерения (т. е. время усреднения по всем элементарным ФЭ) составляло величину порядка единиц наносекунд. Как будет показано позже, наличие двух временных параметров: временного разрешения и эффективного характеристического времени измерения позволило получать информацию не только о времени оптической дефазировки в исследуемых системах, но и наблюдать вклад в уширение линии, вызываемый процессами спектральной диффузии в этих системах за времена порядка нескольких наносекунд.
Анализ вклада в оптическую дефазировку, обусловленного взаимодействием с НЧМ.
На Рис. 4.11 приведен спектр поглощения для системы ТБТ в ПИБе, измеренный при комнатной температуре. Эта система отличается высоким отношением сигнала к шуму и узкими линиями при регистрации спектров ОМ, что было очень важно с экспериментальной точки зрения. Что касается влияния выбора изучаемой системы на выяснение физики изучаемых явлений, то, как уже указывалось, согласно современным представлениям, подтвержденным много численными экспериментами, основные особенности динамических процессов в неупорядоченной твердотельной среде определяются именно наличием внутреннего беспорядка в этой среде и мало зависят от ее конкретного строения. Поэтому при выборе системы для проведенных исследований мы исходили в первую очередь из соображений экспериментальных удобств и преимуществ.
Методика приготовления образцов была следующей. ТВТ (использовался тот же материал, что и в экспериментах по фотонному эхо, выполненных в данной работе) растворялся в толуоле (х.ч., Aldrich) и выдерживался для полного растворения не менее суток. Затем полученный раствор добавлялся в предварительно приготовленный раствор ПИБа (Aldrich, молекулярный вес 4.2x10 ) в том же толуоле. После этого, путем добавления небольшого количества раствора ТВТ в толуоле в растворенный в толуоле ПИБ, получался раствор ТВТ в ПИБе и толуоле. Концентрация ТВТ в этом растворе подбиралась таким образом, чтобы после полного испарения толуола она находилась в пределах 10" -1(ГМ. Затем приготавливался образец, и проводилось пробное измерение. По результатам таких проб концентрация ТВТ в ПИБ доводилась до уровня, когда в поле зрения приемного объектива попадало 3-5 молекул. Точная оценка окончательной концентрации молекул ТВТ в ПИБе не проводилась.
Образец приготавливался в виде пленки толщиной 200-300 нм, путем нанесения капли растворенного в толуоле рабочего вещества на поверхность быстро вращающейся стеклянной пластинки (технология spin-coating). Для этого использовались покровные стекла от микроскопа толщиной -130 мкм, которые служили в качестве подложки, удерживающей пленку. Проверка показала, что паразитные световые сигналы от таких пластинок были пренебрежимо малы. Для предотвращения возможных эффектов, связанных с взаимодействием исследуемой пленки с подложкой, эта пленка наносилась на предварительно нанесенную на стеклянную подложку пленку чистого ПИБа, толщиной -100 нм. Толщина получаемых пленок контролировалась с помощью атомно-силового микроскопа.
Мультиплетный характер спектров ОМ в низкотемпературных стеклах и изменения их параметров во времени приводят к ряду принципиальных вопросов при измерении таких спектров. Как регистрировать указанные спектры для того, чтобы не потерять содержащуюся в них информацию о динамике окружающей среды? Как представлять результаты измерения меняющихся во времени спектров ОМ?
В настоящей работе, также как и в подавляющем большинстве работ по СОМ, спектры ОМ измерялись путем детектирования спектров возбуждения флуоресценции изучаемых молекул. Обычно в экспериментах по СОМ такие спектры измеряют путем медленной однократной перестройки частоты лазера в исследуемом диапазоне. Относительно большое время измерения (десятки секунд и более) выбирается для того, чтобы достичь приемлемого значения отношения сигнала к шуму. Такая регистрация может приводить к значительной потере информации о временных изменениях в детектируемом спектре и затруднениям при попытках интерпретации таких спектров. Более того, как будет показано ниже, такой способ регистрации спектров может приводить также к "заужению" измеряемых линий.
В данной работе регистрация меняющихся во времени спектров ОМ осуществлялась путем быстрого, многократного сканирования частоты лазера в выбранном участке спектра. Это позволяло наблюдать временные изменения изучаемых спектров. Для одновременного отображения большой совокупности таких спектров, число которых доходило в каждом измерении до сотен и тысяч, было применено их представление в виде двухмерной картинки (такое представление большого числа спектров принято называть 2D-ploi). Визуализация многократно повторяющихся спектров ОМ путем 2D-plot было впервые реализована в работе W.P. Ambrose и W.E. Moerner ("Fluorescence spectroscopy and spectral diffusion of single impurity molecules in a crystal" II Nature, Vol. 349, P. 225 1991). и названа методом регистрации спектральных траекторий или спектральных следов {spectral trails). Принцип построения 2D-plot поясняет Рис. 4.12. Горизонтальная ось на 2D-plot соответствует частоте лазера (или времени от начала очередного скана), а вертикальная - порядковому номеру спектра (и, соответственно, времени, прошедшему с начала процедуры сканирования спектров). Интенсивность насыщенности каждой точки на такой картинке черным цветом (или цветовая гамма в случае цветной картинки) соответствует интенсивности регистрируемого спектра возбуждения флуоресценции, которая пропорциональна величине сигнала флуоресценции при данной частоте сканирования лазера (в данный момент времени). Для большей ясности на представленном рисунке приведен трехмерный способ представления большого количества непрерывно измеряемых в выбранном диапазоне частот спектров, который также используют в аналогичных случаях (т.н. 3D-plot).