Содержание к диссертации
Введение
1 . Значимость техногенного минерального сырья
1.1. Минеральные ресурсы рудной отрасли в РФ и вольфрамовой подотрасли
1.2. Техногенные минеральные образования. Классификация. Необходимость использования
1.3. Техногенное минеральное образование Джидинского ВМК
1.4. Цели и задачи исследования. Методы исследования. Положения, выносимые на защиту
2. Исследование вещественного состава и технологических свойств лежалых хвостов джидинского вмк
2.1. Геологическое опробование и оценка распределения вольфрама
2.2. Вещественный состав минерального сырья
2.3. Технологические свойства минерального сырья
2.3.1. Гранулометрический состав
2.3.2. Исследование возможности радиометрической сепарации минерального сырья в исходной крупности
2.3.3. Гравитационный анализ
2.3.4. Магнитный анализ
3. Разработка технологической схемы
3.1. Технологическое тестирование разных гравитационных аппаратов при обогащении лежалых хвостов различной крупности
3.2. Оптимизация схемы переработки ОТО
3.3. Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки
- Вещественный состав минерального сырья
- Технологические свойства минерального сырья
- Оптимизация схемы переработки ОТО
- Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки
Введение к работе
Науки об обогащении полезных ископаемых, прежде всего, направлены на разработку теоретических основ процессов разделения минералов и создание обогатительных аппаратов, на раскрытие взаимосвязи закономерностей распределения компонентов и условий разделения в продуктах обогащения с целью повышения селективности и скорости разделения, его эффективности и экономичности, экологической безопасности.
Несмотря на значительные запасы полезных ископаемых и сокращение в последние годы ресурсопотребления, истощение минеральных ресурсов является одной из важнейших проблем в России. Слабое использование ресурсосберегающих технологий способствует большим потерям полезных ископаемых при добыче и обогащении сырья [1].
Анализ развития техники и технологии обогащения полезных ископаемых за последние 10-15 лет указывает на значительные достижения отечественной фундаментальной науки в области познания основных явлений и закономерностей при разделении минеральных комплексов, что позволяет создать высокоэффективные процессы и технологии для первичной переработки руд сложного вещественного состава и, как следствие, обеспечить металлургическую промышленность необходимой номенклатурой и качеством концентратов. В то же время в нашей стране в сравнении с развитыми зарубежными государствами до сих пор наблюдается значительное отставание в развитии машиностроительной базы для производства основного и вспомогательного обогатительного оборудования, в его качестве, металлоемкости, энергоемкости и износостойкости [2].
Кроме того, в силу ведомственной принадлежности горно-обогатительных предприятий комплексное сырье перерабатывалось только с учетом необходимой потребности отрасли в конкретном металле, что приводило к нерациональному использованию природных минеральных ресурсов и увеличению затрат на складирование отходов [3]. В настоящее время накоплено
более 12 млрд.т отходов, содержание ценных компонентов в которых в ряде случаев превышает их содержание в природных месторождениях [2].
Помимо вышеперечисленных негативных тенденций, начиная с 90-х годов резко обострилась экологическая обстановка на горно-обогатительных предприятиях (в ряде регионов угрожая существованию не только биоты, но и человека), наметилось прогрессирующее снижение добычи руд цветных и черных металлов, горно-химического сырья, ухудшение качества перерабатываемых руд и, как следствие, вовлечение в переработку труднообогатимых руд сложного вещественного состава, характеризующихся низким содержанием ценных компонентов, тонкой вкрапленностью и близкими технологическими свойствами минералов. Так, за последние 20 лет содержание цветных металлов в рудах снизилось в 1,3-1,5 раза, железа в 1,25 раза, золота в 1,2 раза, доля труднообогатимых руд и угля возросла с 15% до 40% от общей массы сырья, поступающего на обогащение [3-7].
Воздействие человека на природную среду в процессе хозяйственной деятельности ныне приобретает глобальный характер. По масштабам извлекаемых и перемещаемых пород, преобразования рельефа, воздействия на перераспределение и динамику поверхностных и подземных вод, активизации геохимического переноса и т.д. эта деятельность сопоставима с геологическими процессами [8].
Беспрецедентный масштаб извлекаемых минеральных ресурсов ведет к их быстрому истощению, накоплению на поверхности Земли, в атмосфере и гидросфере большого числа отходов, постепенной деградации природных ландшафтов, сокращению биоразнообразия, снижению природного потенциала территорий и их жизнеобеспечивающих функций [1,9].
Хранилища отходов рудообогащения являются объектами повышенной экологической опасности из-за их негативного воздействия на воздушный бассейн, подземные и поверхностные воды, почвенный покров на обширных территориях [9,10]. Наряду с этим хвостохранилища — малоизученные техногенные месторождения, использование которых позволит получить дополнительные
источники рудно-минерального сырья при существенном уменьшении масштабов нарушения геологической среды в регионе [8,11].
Производство продукции из техногенных месторождений, как правило, в несколько раз дешевле, чем из специально добываемого для этого сырья, и характеризуется быстрой окупаемостью капиталовложений. Однако сложный химический, минералогический и гранулометрический состав хвостохранилищ, а также широкий набор содержащихся в них полезных ископаемых (от главных и попутных компонентов до простейших строительных материалов) затрудняют расчет суммарного экономического эффекта от их переработки и определяют индивидуальный подход к оценке каждого хвостохранилища [2,12].
Следовательно, в настоящий момент выявился ряд неразрешимых противоречий между изменением характера минерально-сырьевой базы, т.е. необходимостью вовлечения в переработку труднообогатимых руд и техногенных месторождений, экологически обостренной ситуацией в горнопромышленных регионах и состоянием техники, технологии и организации первичной переработки минерального сырья [1,13].
Вопросы использования отходов обогащения полиметаллических, золотосодержащих и редких металлов имеют как экономический, так и экологические аспекты [14].
В достижении современного уровня развития теории и практики переработки хвостов обогащения руд цветных, редких и благородных металлов большой вклад внесли В.А. Чантурия, В.З. Козин, В.М. Авдохин, СБ. Леонов, Л.А. Барский, А.А. Абрамов, В.И. Кармазин, СИ. Митрофанов и др.
Важной составной частью общей стратегии рудной отрасли, в т.ч. вольфрамовой, является рост использования отходов рудообогащения, как дополнительных источников рудно-минерального сырья, при существенном уменьшении масштабов нарушения геологической среды в регионе и негативного воздействия на все компоненты окружающей среды [8,14,15].
В области использования отходов рудообогащения важнейшим является детальное минералого-технологическое исследование каждого конкретного,
индивидуального техногенного месторождения, результаты которого позволят разработать эффективную и экологически безопасную технологию промышленного освоения дополнительного источника рудно-минерального сырья [15].
Рассматриваемые в диссертационной работе проблемы решались в соответствии с научным направлением кафедры Обогащения полезных ископаемых и инженерной экологии Иркутского государственного технического университета по теме «Фундаментальные и технологические исследования в области переработки минерального и техногенного сырья с целью комплексного его использования, с учетом экологических проблем в сложных индустриальных системах» и х/д темой № 118 «Исследование на обогатимость лежалых хвостов Джидинского ВМК».
Цель работы — научно обосновать, разработать и апробировать
рациональные технологические методы обогащения лежалых
вольфрамсодержащих хвостов Джидинского ВМК.
В работе решались следующие задачи:
- оценить распределение вольфрама по всему пространству основного
техногенного образования Джидинского ВМК;
изучить вещественный состав лежалых хвостов Джижинского ВМК;
исследовать контрастность лежалых хвостов в исходной крупности по содержанию W и S (II);
исследовать гравитационную обогатимость лежалых хвостов Джидинского ВМК в различной крупности;
определить целесообразности использования магнитного обогащения для повышения качества черновых вольфрамсодержащих концентратов;
оптимизировать технологическую схему обогащения техногенного сырья ОТО Джидинского ВМК;
провести полупромышленные испытания разработанной схемы извлечения W из лежалых хвостов ДВМК;
- разработать схему цепи аппаратов для промышленной переработки лежалых хвостов Джидинского ВМК.
Для выполнения исследований использовалась представительная технологическая проба лежалых хвостов Джидинского ВМК.
При решении сформулированных задач использовались следующие методы исследования: спектральный, оптический, химический, минералогический, фазовый, гравитационный и магнитный методы анализа вещественного состава и технологических свойств исходного минерального сырья и продуктов обогащения.
На защиту выносятся следующие основные научные положения:
Установлены закономерности распределения исходного техногенного минерального сырья и вольфрама по классам крупности. Доказана необходимость первичной (предварительной) классификации по крупности 3 мм.
Установлены количественные характеристики лежалых хвостов рудообогащения руд Джидинского ВМК по содержанию WO3 и сульфидной серы. Доказано, что исходное минеральное сырье относится к категории неконтрастных руд. Выявлена достоверная и надежная корреляционная связь между содержаниями WO3 и S (II).
Установлены количественные закономерности гравитационной обогатимости лежалых хвостов Джидинского ВМК. Доказано, что для исходного материала любой крупности эффективным методом извлечения W является гравитационное обогащение. Определены прогнозные технологические показатели гравитационного обогащения исходного минерального сырья в различной крупности.
Установлены количественные закономерности распределения лежалых хвостов рудообогащения Джидинского ВМК по фракциям различной удельной магнитной восприимчивости. Доказана эффективность последовательного применения магнитной и центробежной сепарации для повышения качества черновых W-содержащих продуктов. Оптимизированы технологические режимы магнитной сепарации.
Вещественный состав минерального сырья
При обследовании побочного хвостохранилища (хвостохранилище аварийного сброса (ХАС)) из шурфов и зачисток по склонам отвалов отобрано 35 бороздовых проб; общая длина борозд - 46 м. Шурфы и зачистки расположены в 6 разведочных линиях, отстоящих друг от друга на 40-100 м; расстояние между шурфами (зачистками) в разведочных линиях от 30-40 до 100-150 м. Опробованы все литологические разновидности песков. Пробы проанализированы на содержание W03 и S (II) [38]. На этом участке отобрано 13 проб из шурфов глубиной 1,0 м. Расстояние между линиями - около 200 м, между выработками - от 40 до 100 м (в зависимости от распространения однотипного литологического слоя). Результаты анализов проб на содержание WO3 и серы приведены в табл. 2.1. Таблица 2.1 - Содержание WO3 и сульфидной серы в частных пробах ХАС Можно увидеть, что содержание WO3 колеблется в пределах 0,05-0,09 %, за исключением пробы М-16, отобранной из среднезернистых серых песков. В этой же пробе установлены высокие концентрации S (II) - 4,23 % и 3,67 %. По отдельным пробам (М-8, М-18) отмечено высокое содержание S сульфатной составляет (20-30 % от общего содержания серы). В верхней части хвостохранилища аварийного сброса было отобрано 11 проб различных литологических разностей. Содержание WO3 и S (II), в зависимости от происхождения песков, варьирует в большом диапазоне: от 0,09 до 0,29% и от 0,78 до 5,8%, соответственно. Повышенные содержания WO3 характерны для средне-крупнозернистых разностей песков. Содержание S (VI) составляет 80 - 82 % от общего содержания S, но в отдельных пробах преимущественно с низкими содержаниями трехокиси вольфрама и общей серы, снижается до 30 %.
Запасы месторождения могут быть оценены как ресурсы категории Pj (см. табл. 2.2). По верхней части длины шурфа изменяются в большом диапазоне: от 0,7 до 9,0 м, поэтому среднее содержание контролируемых компонентов рассчитано с учетом параметров шурфов. На наш взгляд, исходя из приведенной характеристики, с учетом состава лежалых хвостов, их сохранности, условий залегания, засоренности бытовыми отходами, содержания в них WO3 и степени окисления серы, промышленный интерес может представлять лишь верхняя часть хвостохранилища аварийного сброса с ресурсами 1,0 млн. т. песков и 1330 т WO3 с содержанием WO3 0,126 %. Расположение их в непосредственной близости от проектируемой обогатительной фабрики (250-300 м) благоприятствует их транспортировке. Нижняя часть хвостохранилища аварийного сброса подлежит утилизации в рамках программы экологического оздоровления г. Закаменска.
На площади месторождения было отобрано 5 проб. Интервал между точками отбора - 1000-1250 м. Пробы отбирались на всю мощность слоя, анализировались на содержание WO3, Бобщ и S (II) (см. табл. 2.3). Таблица 2.3 - Содержание WO3 и серы в частных пробах АТО Из результатов анализов видно, что содержание WO3 невелико, изменяется от 0,04 до 0,10 %. Среднее содержание S (II) - 0,12% и не представляет практического интереса. Проведенные работы не позволяют рассматривать побочное аллювиальное хвостохранилище в качестве потенциального промышленного объекта. Однако, как источник загрязнения окружающей среды, эти образования подлежат утилизации [38]. Основное хвостохранилище (ОТО) разведано по параллельным разведочным линиям, ориентированным по азимуту 120 и расположенным через 160 - 180 м друг от друга. Разведочные линии ориентированы вкрест простирания дамбы и пульпровода, через который производился сброс хвостов рудообогащения, осаждавшихся субпараллельно гребню дамбы. Таким образом, разведочные линии ориентированы были также вкрест напластованию техногенных отложений. По разведочным линиям бульдозером пройдены траншеи на глубину 3-5 м, из которых осуществлена проходка шурфов на глубину от 1 до 4 м. Глубина траншей и шурфов лимитировалась устойчивостью стенок выработок. Шурфы в траншеях пройдены через 20 - 50 м в центральной части месторождения и через 100 м - на юго-восточном фланге, на площади бывшего пруда-отстойника (ныне высохшего), из которого в период работы комбината осуществлялось водоснабжение обогатительных фабрик.
Площадь ОТО по границе распространения составляет 1015 тыс. м (101,5 га); по длинной оси (вдоль долины рч. Барун-Нарын) вытянуто на 1580 м, в поперечном направлении (вблизи дамбы) ширина его равна 1050 м. На этой площади в пяти основных разведочных линиях из предварительно созданных траншей пройдено 78 шурфов. Следовательно, один шурф освещает площадь 12850 м, что эквивалентно средней сети 130x100 м. В центральной части месторождения, представленной разнозернистыми песками, в районе размещения пульповодов на площади 530 тыс. м (52 % площади ТМО) пройдено 58 шурфов и одна скважина (75 % всех выработок); площадь разведочной сети составила в среднем 90x100 м2. На крайнем юго-восточном фланге на месте бывшего пруда-отстойника в области развития тонкозернистых осадков - илов пройдено 12 шурфов (15 % всего количества), характеризующих площадь около 370 тыс. м (37 % от общей площади техногенного месторождения); средняя площадь сети здесь составила 310x100 м2. В области перехода от разнозернистых песков к илам, сложенной пылеватыми песками, на площади около 115 тыс. м (11% площади техногенного месторождения) пройдено 8 шурфов (10% количества выработок на техногенном месторождении) и средняя площадь разведочной сети составила 145x100 м . Средняя длина опробованного сечения на техногенном месторождении 4,3 м, в том числе по разнозернистым пескам -5,2 м, пылеватым пескам -2,1 м, илам -1,3 м. Абсолютные отметки современного рельефа поверхности техногенного месторождения в опробованных сечениях изменяются от 1110- 1115 м вблизи верхней части дамбы, до 1146 - 148 м в центральной части идо1130-1135мна юго-восточном фланге. В совокупности опробовано 60 - 65% мощности техногенного месторождения. Траншеи, шурфы, зачистки и закопуши задокументированы в М 1:50 -1:100 и опробованы бороздой сечением 0,1x0,05 м2 (1999 г.) и 0,05x0,05 м2 (2000 г.). Длина бороздовых проб составляла 1 м, масса 10 - 12 кг в 1999г. и 4 - 6 кг в 2000г. Суммарная длина опробованных интервалов в разведочных линиях составила 338 м, в целом с учетом участков детализации и отдельных сечений вне сети - 459 м. Масса отобранных проб — 5 т.
Пробы вместе с паспортом (характеристика породы, номер пробы, выработки и исполнитель) упаковывались в полиэтиленовые и затем матерчатые мешки и направлялись в РАЦ Республики Бурятия, где взвешивались, высушивались, анализировались на содержание W03, и S (II) по методикам НС AM [14,38]. Правильность анализов подтверждена сопоставимостью результатов рядовых, групповых (анализы РАЦ) и технологических (анализы ЦНИГРИ и ВИМСа) проб. Результаты анализа частных технологических проб, отобранных на ОТО, приведены в Приложении 1. Основное (ОТО) и два побочных хвостохранилища (ХАТ и АТО) Джидинского ВМК статистически сравнивались по содержанию WO3 с помощью критерия Стьюдента (см. Приложение 2) [54]. С доверительной вероятностью 95% установлено: - отсутствие значимого статистического различия по содержанию WO3 между частными пробами побочных хвостохранилищ; - средние результаты опробования ОТО по содержанию WO3 в 1999 и 2000 гг. относятся к одной генеральной совокупности. Следовательно, химический состав основного хвостохранилища незначимо изменяется во времени под влиянием внешних воздействий. Все запасы ОТО могут быть переработаны по единой технологии.; - средние результаты опробования основного и побочных хвостохранилищ по содержанию WO3 значимо отличаются друг от друга. Следовательно, для вовлечения минерального сырья побочных хвостохранилищ требуется разработка локальной технологии обогащения.
Технологические свойства минерального сырья
По грансоставу отложения разделяются на три типа осадков: пески разнозернистые; пески пылеватые (алевритистые); илы [68,69]. Между этими разновидностями осадков существуют постепенные переходы. Более четкие границы наблюдаются по мощности разреза. Они обусловлены чередованием осадков разного грансостава, разного цвета (от темно-зеленого до светло-желтого и серого) и разного вещественного состава (кварц-полевошпатовая нерудная часть и сульфидная с магнетитом, гематитом, гидроокислами железа и марганца). Вся толща слоистая - от тонко до грубослоистой; последняя более характерна для крупнозернистых разностей отложений или прослоев существенно сульфидной минерализации. Мелкозернистые (алевритистые, иловые фракции, либо слои, сложенные темноцветными - амфиболом, гематитом, гетитом) обычно образуют тонкие (первые см - мм) слойки. Залегание всей толщи осадков субгоризонтальное с преобладающим падением в 1-5 в северных румбах. Пески разнозерн истые расположены в северо-западной и центральной части ОТО, что обусловлено осаждением их вблизи очага разгрузки -пульповода. Ширина полосы разнозернистых песков 400-500 м, по простиранию они занимают всю ширину долины - 900-1000 м. Цвет песков серо-желтый, желто-зеленый. Грансостав переменный - от мелкозернистых до крупнозернистых разностей вплоть до линз гравелитов мощностью 5-20 см и протяженностью до 10-15 м. Пески пылеватые (алевритистые) выделяются в виде пласта мощностью 7-10 м (горизонтальная мощность, выход на поверхность 110-120 м). Залегают под разнозернистыми песками. В разрезе представляют собой слоистую толщу серого, зеленовато-серого цвета с чередованием тонкомелкозернистых песков с прослойками илов. Объем илов в разрезе пылеватых песков увеличивается в юго-восточном направлении, где илы составляют основную часть разреза.
Илы слагают юго-восточную часть ОТО и представлены более тонкими частицами отходов обогащения темно-серого, темно-зеленого, голубовато-зеленого цвета с прослойками песков серовато-желтого цвета. Основной особенностью их строения является более однородная, более массивная текстура с реже проявленной и менее отчетливо выраженной слоистостью. Илы подстилают пески пылеватые и залегают на основании ложа - аллювиально-делювиальных отложениях. Гранулометрическая характеристика минерального сырья ОТО с распределением золота, вольфрама, свинца, цинка, меди, флюорита (кальция и фтора) по классам крупности приведена в табл. 2.8. По данным гранулометрического анализа основная масса материала пробы ОТО (около 58%) имеет крупность —1+0,25 мм, по 17% приходится на крупный (-3+1 мм) и мелкий (-0,25+0,1) мм классы. Доля материала крупностью менее 0,1 мм составляет около 8%, из которого половина (4,13%) приходится на шламовый класс-0,044+0 мм. Для вольфрама характерно незначительное колебание содержания в классах крупности от -3 +1 мм до -0,25+0,1 мм (0,04-0,05%) и резкое повышение (до 0,38%) в классе крупности -0,1+0,044 мм. В шламовом классе -0,044+0 мм содержание вольфрама снижается до 0,19%. Накопление гюбнерита происходит только в мелкоразмерном материале, то есть в классе -0,1+0,044 мм. Таким образом, на 25,28% вольфрам сосредоточен в классе -0,1+0,044 мм при выходе данного класса около 4% и на 37,58% в классе -0,1+0 мм при выходе данного класса 8,37%. Дифференциальная и интегральная гистограммы распределения частиц минерального сырья ОТО по классам крупности и гистограммы абсолютного и относительного распределения W по классам крупности минерального сырья ОТО представлены на рис.2.2. и 2.3. В табл. 2.9 приведены данные по вкрапленности гюбнерита и шеелита в минеральном сырье ОТО исходной крупности и измельченном до - 0,5мм.
В классе -5+3 мм исходного минерального сырья нет зерен побнерита и шеелита, а также сростков. В классе -3+1 мм содержание свободных зерен шеелита и гюбнерита достаточно большое (37,2% и 36,1% соответственно). В классе -1+0,5 мм обе минеральные формы вольфрама присутствуют практически в равных количествах, как в виде свободных зерен, так и в виде сростков. В тонких классах -0,5+0,25, -0,25+0,125, -0,125+0,063, -0,063+0 мм содержание свободных зерен шеелита и гюбнерита существенно больше содержания сростков (содержание сростков варьирует от 11,9 до 3,0 %) Класс крупности -1+0,5 мм является граничным и в нем содержание свободных зерен шеелита и гюбнерита и их сростков практически одинаковы. На основании данных табл. 2.9 можно сделать вывод о необходимости классификации обесшламленного минерального сырья ОТО по крупности 0,1 мм и раздельного обогащения получаемых классов. Из крупного класса необходимо выделить свободные зерна в концентрат, а хвосты, содержащие сростки, подвергнуть доизмельчению. Измельченные и обесшламленные хвосты следует объединить с обесшламленным классом -0,1+0,044 исходного минерального сырья и направить на гравитационную операцию II с целью извлечения тонких зерен шеелита и побнерита в промпродукт.
2.3.2 Исследование возможности радиометрической сепарации минерального сырья в исходной крупности Радиометрическая сепарация - процесс крупнокускового разделения руд по содержанию ценных компонентов, основанный на избирательном воздействии различных видов радиационного излучения на свойства минералов и химические элементы. Известно свыше двадцати методов радиометрического обогащения; наиболее перспективные из них — рентгенорадиометрический, рентгенолюминесцентный, радиорезонансный, фотометрический, авторадиометрический и нейтронно-абсорбционный [70-72]. С помощью радиометрических методов решают следующие технологические задачи: предварительное обогащение с удалением из руды пустой породы; выделение технологических разновидностей, сортов с последующим обогащением по отдельным схемам; выделение продуктов, пригодных для химико-металлургического передела. Оценка радиометрической обогатимости включает два этапа: изучение свойств руд и экспериментальное определение технологических показателей обогащения. На первом этапе изучают следующие основные свойства: содержание ценных и вредных компонентов, гранулометрический состав, одно- и многокомпонентную контрастность руды. На этом этапе устанавливают принципиальную возможность применения радиометрического обогащения, определяют предельные показатели сепарации (на стадии изучения контрастности), выбирают методы и признаки разделения, оценивают их эффективность, определяют теоретические показатели сепарации, разрабатывают принципиальную схему радиометрического обогащения с учетом особенностей технологии последующей переработки. На втором этапе определяют режимы и практические результаты сепарации, проводят укрупнено-лабораторные испытания схемы радиометрического обогащения, выбирают рациональный вариант схемы на основе технико-экономического сравнения комбинированной технологии (с радиометрической сепарацией в начале процесса) с базовой (традиционной) технологией.
В каждом конкретном случае массу, крупность и число технологических проб устанавливают в зависимости от свойств руды, особенностей строения месторождения и способов его разведки [71-73]. Содержание ценных компонентов и равномерность их распределения в рудном массиве — определяющие факторы применения радиометрического обогащения. На выбор метода радиометрического обогащения влияют присутствие элементов-примесей, изоморфно связанных с полезными минералами и играющих в ряде случаев роль индикаторов, а также содержание вредных примесей, которые также могут быть использованы для этих целей.
Оптимизация схемы переработки ОТО
В связи с вовлечением в промышленную эксплуатацию бедных руд с содержанием вольфрама 0,3-0,4% в последние годы получили распространение многостадиальные комбинированные схемы обогащения, основанные на сочетании гравитации, флотации, магнитной и электрической сепарации, химической доводки бедных флотационных концентратов и др. [94-97]. Проблемам совершенствования технологии обогащения бедных руд был посвящен специальный Международный Конгресс в 1982 г с Сан-Франциско. Анализ технологических схем действующих предприятий показал, что при рудоподготовке получили распространение различные методы предварительной концентрации: фотометрическая сортировка, предварительная отсадка, обогащение в тяжелых средах, мокрая и сухая магнитная сепарация. В частности, фотометрическая сортировка эффективно используется на одном из крупнейших поставщиков вольфрамовой продукции - на предприятии Маунт Корбайн в Австралии, перерабатывающее руды с содержанием вольфрама 0,09% на крупных фабриках КНР - Тайшань и Сихуашань.
При предварительной концентрации рудных компонентов в тяжелых средах используются высокоэффективные аппараты Динавирпуль фирмы Сала (Швеция). По этой технологии материал классифицируют и класс +0,5 мм обогащают в тяжелой среде, представленной смесью ферросилиция. На некоторых фабриках в качестве предварительной концентрации используют сухую и мокрую магнитную сепарацию. Так, на фабрике Эмерсон в США мокрую магнитную сепарацию используют для выделения содержащегося в руде пирротина и магнетита, и на фабрике Уиудаг в Турции класс — 10 мм подвергают сухому измельчению и магнитной сепарации в сепараторах с низкой магнитной напряженностью для выделения магнетита, а затем обогащают в сепараторах с высокой напряженностью с целью выделения граната. Дальнейшее обогащение включает концентрацию на столах, флотогравитацию и флотацию шеелита. Примером применения многостадиальных комбинированных схем обогащения бедных вольфрамовых руд, обеспечивающих получение высококачественных концентратов, являются технологические схемы, используемые на фабриках КНР. Так, на фабрике Тайшань производительностью 3000 т/сут по руде перерабатывают вольфрамит-шеелитовый материал с содержанием вольфрама 0,25%. Исходная руда подвергается ручной и фотометрической сортировке с удалением в отвал 55% пустой породы. Дальнейшее обогащение производят на отсадочных машинах и концентрационных столах. Полученные черновые гравитационные концентраты доводят методами флотогравитации и флотации. На фабриках Сихуашань, перерабатывающей руды с соотношением вольфрамита к шеелиту 10:1, применяется аналогичный гравитационный цикл. Черновой гравитационный концентрат поступает на флотогравитацию и флотацию, за счет которых удаляют сульфиды. Далее осуществляется мокрая магнитная сепарация камерного продукта с целью выделения вольфрамита и редкоземельных минералов. Магнитную фракцию направляют на электростатическую сепарацию и затем флотацию вольфрамита. Немагнитная фракция поступает на флотацию сульфидов, а хвосты флотации подвергают магнитной сепарации с получением шеелитового и касситерит-вольфрамитового концентратов. Суммарное содержание WO3 составляет 65% при извлечении 85% [26,98].
Отмечается расширение объемов использования процесса флотации в сочетании с химической доводкой получаемых при этом бедных концентратов. В Канаде на фабрике Маунт Плезент для обогащения комплексных вольфрамомолибденовых руд принята флотационная технология, включающая флотацию сульфидов, молибденита и вольфрамита. В основной сульфидной флотации извлекают медь, молибден, свинец, цинк. Концентрат перечищают, доизмельчают, подвергают пропарке и кондиционированию с сульфидом натрия. Молибденовый концентрат перечищают и подвергают кислотному выщелачиванию. Хвосты сульфидной флотации обрабатывают кремнефтористым натрием для депрессии минералов пустой породы и флотируют вольфрамит фосфорорганической кислотой с последующим выщелачиванием серной кислотой полученного вольфрамитового концентрата. На фабрике Кантунг (Канада) процесс флотации шеелита осложняется наличием в руде талька, поэтому введен первичный цикл флотации талька, затем флотируют медные минералы и пирротин. Хвосты флотации подвергают гравитационному обогащению с получением двух вольфрамовых концентратов. Хвосты гравитации направляют в цикл флотации шеелита, а полученный флотационный концентрат обрабатывают соляной кислотой. На фабрике Иксшеберг (Швеция) замена гравитационно-флотационной схемы чисто флотационной позволило получить шеелитовый концентрат с содержанием 68-70% WO3 при извлечении 90% (по гравитационно-флотационной схеме извлечение было 50%) [19,20,97]. Большое внимание в последнее время уделяется совершенствованию технологии извлечения вольфрамовых минералов из шламов по двум основным направлениям: гравитационное обогащение шламов на современных многодечных концентраторах (аналогично обогащению оловосодержащих шламов) с последующей доводкой концентрата флотацией и обогащения на мокрых магнитных сепараторах с высокой напряженностью магнитного поля (для вольфрамитовых шламов).
Примером применения комбинированной технологии являются фабрики КНР. Технология включает сгущение шламов до 25-30% твердого, сульфидную флотацию, обогащение хвостов в центробежных сепараторах. Получаемый черновой концентрат (содержание WO3 24,3% при извлечении 55,8%) поступает на флотацию вольфрамита с использованием в качестве собирателя фосфорорганической кислоты. Флотационный концентрат с содержанием 45% WO3 подвергают мокрой магнитной сепарации с получением вольфрамитового и оловянного концентратов. По этой технологии из шламов с содержанием 0,3-0,4% WO3 получают вольфрамитовый концентрат с содержанием 61,3% WO3 при извлечении 61,6%. Таким образом, технологические схемы обогащения вольфрамовых руд направлены на повышение комплексности использования сырья и выделения в самостоятельные виды продукции всех попутных ценных компонентов. Так, на фабрике Куда (Япония) при обогащении комплексных руд получают 6 товарных продуктов [98]. С целью определения возможности доизвлечения полезных компонентов из лежалых хвостов обогащения в середине 90-х гг. в ЦНИГРИ [38] изучена технологическая проба с содержанием триоксида вольфрама 0,1%. Установлено, что основным ценным компонентом в хвостах является вольфрам. Содержания цветных металлов довольно низкие: меди 0,01-0,03; свинца - 0,09-0,2; цинка -0,06-0,15%, золото и серебро в пробе не обнаружены. Проведенные исследования показали, что для успешного извлечения триоксида вольфрама потребуются значительные расходы на доизмельчение хвостов и на данном этапе вовлечение их в переработку не перспективно.
Технологическая схема обогащения полезных ископаемых, включающая два и более аппаратов, воплощает в себе все характерные черты сложного объекта, а оптимизация технологической схемы может составить, по-видимому, основную задачу системного анализа. В решении этой задачи могут быть использованы почти все рассмотренные ранее методы моделирования и оптимизации. Однако структура схем обогатительных фабрик настолько сложна, что необходимо рассмотреть дополнительные методы оптимизации. Действительно, для схемы, состоящей хотя бы из 10—12 аппаратов, трудно реализовать обычный факторный эксперимент или проводить множественную нелинейную статистическую обработку. В настоящее время намечается несколько путей оптимизации схем эволюционный путь обобщения накопленного опыта и осуществления шага в удачном направлении изменения схемы.
Полупромышленные испытания разработанной технологической схемы обогащения ОТО и промышленной установки
Испытания проведены в октябрь-ноябрь 2003 г. При испытаниях за 24 часа переработано 15 т исходного минерального сырья. Результаты опробования разработанной технологической схемы представлены на рис. 3.4 и 3.5 и в табл. 3.6. Видно, что выход кондиционного концентрата равен 0,14%, содержание 62,7% при извлечении WO3 49,875%. Результаты спектрального анализа представительной пробы полученного концентрата, приведенные в табл. 3.7, подтверждают, что W-концентрат III магнитной сепарации является кондиционным и соответствует марке КВГ (Т) ГОСТа 213-73 «Технические требования (состав,%) к вольфрамовым концентратам, получаемым из вольфрамсодержащих руд» [103]. Следовательно, разработанная технологическая схема извлечения W из лежалых хвостов рудообогащения Джидинского ВМК может быть рекомендована к промышленному использованию и лежалые хвосты переведены в дополнительное промышленное минеральное сырье Джидинского ВМК.
Для промышленной переработки лежалых хвостов по разработанной технологии при Q=400 т/ч разработан перечень оборудования, приведенный в На проведение обогатительной операции в крупности +0,1 мм рекомендуется обязательно устанавливать центробежный сепаратор KNELSON с непрерывной разгрузкой концентрата, в то время как при центробежном обогащении класса -0,1 мм необходимо осуществлять на центробежном сепараторе KNELSON с периодической разгрузкой концентрата. Таким образом установлено, что наиболее эффективным способом извлечения WO3 из ОТО крупностью -3+0,5 мм является винтовая сепарация; из классов крупности -0,5+0,1 и -0,1+0 мм и измельченных до -0,1 мм хвостов первичного обогащения - центробежная сепарация. Существенные особенности технологии переработки лежалых хвостов Джидинского ВМК заключаются в следующем: 1. Необходима узкая классификация питания, направляемого на первичное обогащение и доводку; 2. Необходим индивидуальный подход при выборе метода первичного обогащения классов различной крупности; 3. Получение отвальных хвостов возможно при первичном обогащении самого тонкого питания (-0,1+0,02мм); 4. Использование операций гидроциклонирования для совмещения операций обезвоживания и разделения по крупности. Слив содержит частицы крупностью -0,02 мм; 5. Компактность расположения оборудования. 6. Рентабельность технологической схемы (ПРИЛОЖЕНИЕ 4), конечный продукт кондиционный концентрат, удовлетворяющий требованиям ГОСТа 213-73.