Введение к работе
Актуальность работы. Задачу создания новых материалов, в том числе и сталей, с высокой конструктивной прочностью, сочетающейся с необходимой совокупностью технологических свойств, при изготовлении из них изделий (деформируемостью без нарушения сплошности, свариваемостью и др.), можно решить только при фундаментальном изучении влияния различных факторов на структуру, фазовый состав и свойства материалов. Использование таких материалов обеспечивает снижение металлоемкости машин и конструкций, улучшение эффективности и надежности их работы.
Характерно, что возможности повышения уровня эксплуатационных характеристик сталей путем применения традиционных композиций и видов термообработки близки к исчерпанию.
Работами последних десятилетий показано, что создание сталей с гетерофазной феррито-мартенситной структурой является перспективным направлением повышения конструктивной прочности, улучшения технологичности и обрабатываемости изделий различного назначения. Для разработки таких сталей с заданным уровнем свойств необходимы отыскание их композиций, режимов термической и пластической обработок, приводящих к формированию гетерофазной структуры с оптимальной морфологией и соотношением компонентов, создание моделей, описывающих пластическую деформацию и упрочнение многофазных материалов.
Данная диссертационная работа является обобщением научных и практических результатов исследований, выполненных автором в период с 1985 по 2009 год по проблемам формирования гетерофазной структуры в углеродистых низколегированных сталях, их деформационного упрочнения и пластичности, а также связи между структурой и комплексом механических характеристик.
Цели и задачи работы. Целью работы является теоретическое и экспериментальное обобщение закономерностей формирования гетерофазной структуры в углеродистых низколегированных сталях, деформационного упрочнения и пластичности материалов с различающимися свойствами структурных составляющих и совершенствования на этой основе композиций и режимов термической обработки малоуглеродистых низколегированных сталей.
Для достижения поставленной цели в работе решались следующие задачи:
- изучение закономерностей формирования структуры и фазовых превращений при ускоренном охлаждении малоуглеродистых низколегированных сталей из межкритического интервала температур (МКИ) и ступенчатой закалки;
- установление особенностей деформационного упрочнения двухфазных феррито-мартенситных сталей (ДФМС) и их пластичности при различных схемах напряженного состояния, отвечающим, в том числе реальным операциям холодной объемной и листовой штамповки;
- создание модели пластического течения и упрочнения ДФМС, учитывающей неравенство и перераспределение деформации между разнопрочностными составляющими в процессе нагружения;
- исследование процессов, протекающих при закалочном и деформационном старении ДФМС, и их влияния на сопротивление данных материалов хрупкому, вязкому и усталостному разрушению;
- формирование основных положений по созданию низколегированных гетерофазных сталей, содержащих в оптимальном соотношении феррит и мартенсит (бейнит), а также главных качеств ДФМС, делающих их перспективным материалом для изделий, изготавливаемых холодным формоизменением или горячей деформацией.
Научная новизна работы определяется следующей совокупностью результатов исследований.
- Дано научное обоснование составов низколегированных сталей и режимов термической обработки, приводящим к образованию гетерофазной структуры с требуемым комплексом механических свойств, по которым они являются перспективным материалом для изделий, изготавливаемых холодным формоизменением или горячей деформацией.
- Впервые для большой группы доэвтектоидных низколегированных сталей построены термокинетические диаграммы распада переохлажденного аустенита и микроструктурные карты, показывающие влияние температуры нагрева в межкритический интервал (МКИ) и скорости последующего охлаждения на тип и количество отдельных структурных составляющих.
- Выявлены особенности морфологии структурных составляющих, формирующихся после нагрева малоуглеродистых сталей в МКИ и охлаждения с различными скоростями: мартенсита (бейнита), исходного феррита, существовавшего до нагрева, нового феррита, зарождающегося при распаде аустенита эпитаксиально на исходном феррите, а также концентрационные и структурные изменения в исходном и эпитаксиальном ферритах в зависимости от температуры и длительности отпуска.
- Предложена и экспериментально проверена модель деформационного упрочнения ДФМС, учитывающая неравенство и перераспределение деформации между разнопрочностными структурными составляющими в процессе пластического течения.
- Изучена и сопоставлена пластичность сталей с феррито-перлитной и феррито-мартенситной структурой при схемах напряженного состояния, соответствующих реальным способам изготовления деталей методами холодного формоизменения.
- На основе комплексного исследования деформационного старения ДФМС, его влияния на прочностные и пластические характеристики, способности сопротивляться хрупкому, вязкому и усталостному разрушению установлено, что наибольшая склонность к старению проявляется после деформации растяжением на 4-6%, а при дальнейшем увеличении степени деформации интенсивность его затухает.
- Разработана методика тестирования механических свойств микрообъёмов, позволяющая с помощью специального программного комплекса проводить построение диаграмм упрочнения отдельных структурных составляющих и оценивать их вклад в пластическое течение гетерофазных сплавов.
Достоверность результатов и сделанных выводов обеспечиваются:
использованием комплекса современных методов исследования структуры (металлографии с компьютерным анализом изображения, электронной микроскопии, рентгеноструктурного анализа), фазового и химического составов (растровой электронной микроскопии со спектрометром энергетической дисперсии), поведения примесных атомов внедрения и замещения (внутреннего трения, ядерной гамма-резонансная спектроскопии), прочностных, вязко-пластических характеристик, предела выносливости, а также пластичности сталей при растяжении и кручении с наложением гидростатического давления;
согласованностью экспериментальных результатов, полученных по различным методикам, статистико-вероятностной обработкой экспериментальных данных и их воспроизводимостью.
Практическая значимость работы. Совокупность экспериментальных и теоретических положений, касающихся изменений структуры и механических свойств при деформации и термомеханической обработке, пластического течения и разрушения гетерофазных сплавов, состоящих из нескольких структурных составляющих с различными свойствами нашла своё отражение в учебнике “Физическое металловедение”, допущенной Министерством образования Российской Федерации, в качестве учебника для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированных специалистов 651300 “Металлургия”.
Результаты комплексных исследований представлены к реализации на ряде предприятий. На производственном объединении “Турбомоторный завод” (использование ускоренного охлаждения из МКИ в качестве исходной обработки стали 10кп для холодной высадки крепежных деталей).
В условиях Ревдинского метизно-металлургического завода показано, что применение ускоренного охлаждения проволоки из МКИ приводит к повышению производительности отжигового отделения сталепроволочного цеха на 20%.
Внедрение результатов данной работы на Уральском электромеханическом заводе позволило повысить технологическую пластичность заготовок для листовой штамповки, а также прочность и жесткость готовых конструкционных элементов. В результате получен специальный эффект.
На защиту выносятся:
Установленные закономерности образования аустенита при нагреве в МКИ, особенности фазового и химического состава продуктов его распада после охлаждения с различными скоростями, концентрационные и структурные изменения в исходном и эпитаксиальном ферритах при отпуске.
Модель деформационного упрочнения ДФМС, базирующаяся на учете неравенства и перераспределения деформации между разнопрочностными структурными составляющими в процессе пластического течения.
Совокупность результатов, описывающих характеристики пластичности сталей с феррито-перлитной и феррито-мартенситной структурой при различных схемах напряженного состояния, отвечающим, в том числе реальным способам изготовления деталей методами холодного формоизменения.
Особенности структурных изменений при деформационном упрочнении и старении ДФМС, их влияние на комплекс механических свойств и характеристики разрушения сталей данного класса.
Сформулированные на основе результатов собственных экспериментальных и теоретических исследований, а также литературных данных основные требования к структуре ДФМС, предназначенных для изготовления деталей методами холодного формоизменения, а также концепция создания экономичных доэвтектоидных низколегированных сталей с гетерофазной структурой, обладающих высокой конструктивной прочностью.
Апробация диссертационной работы. Основные результаты настоящей работы были доложены и обсуждены на Всесоюзной научно-технической конференции “Основные направления экономии и рационального использования металла в автотракторостроении”, Челябинск, 1984 г.; Всесоюзном совещании “Взаимодействие дефектов кристаллической решетки и свойства металлов и сплавов”, Тула, 1985 г.; Всесоюзной научно-технической конференции “Повышение качества металлопроката путем термической и термомеханической обработки”, Днепропетровск, 1985 г.; Республиканской научно-технической конференции “Субструктурное упрочнение металлов”, Киев, 1985 г.; XI Всесоюзной конференции “Физика прочности и пластичности металлов и сплавов”, Куйбышев, 1986 г.; Всесоюзной научно-технической конференции “Новые материалы и упрочняющие технологии на основе прогрессивных методов термической и химико-термической обработки в автостроении”, Тольятти, 1986 г.; Научно-технической конференции ”Интенсификация производства и качества машиностроительной продукции за счет применения конструкционных сталей с улучшенными технологическими свойствами”, Челябинск, 1987 г.; Научно-техническом семинаре «Новые материалы и прогрессивные технологические процессы для упрочнения деталей промышленных тракторов и сельскохозяйственных машин», Чебоксары. 1986; V Всероссийской конференции «Механика микронеоднородных материалов и разрушение», Екатеринбург, 2008; Научно-технической конференции «Развитие техники и технологии производства стали и сплавов», Свердловск, 1982; IV Всесоюзном совещании «Химия, технология и применение ванадиевых соединений», Нижний Тагил, 1982; VIII Уральской школе металловедов-термистов «Современные проблемы металловедения и термообработки», Свердловск, 1983; Научно-технической конференции «Совершенствование способов получения и технологии обработки металлов и сплавов», Свердловск, 1984; IX Уральской школе металловедов-термистов Достижения в области металловедения и термической обработки металлов, Свердловск, 1985; X Уральской школе металловедов-термистов «Ускорение научно-технического прогресса в металловедении и термической обработке сталей и сплавов», Устинов, 1987; Всероссийской конференции «Трансфертные технологии, комплексы и оборудование в металлургии и материаловедении» Пермь, 1998; Всероссийской ежегодной научно-технической конференции «Наука – Производство- Технологии – Экология», Киров, 2001; Всероссийской конференции, посвященной 95-летию профессора В.В. Швейкина. УГТУ-УПИ, Екатеринбург. 1999; Всероссийской научной конференции. Бернштейновские чтения по термомеханической обработке. Москва, МИСиС, 1996, 1999, ……….. Научно-технической конференции «Эффективные технологические процессы листовой штамповки», Москва. 1993; Международной научно-технической конференции «Бернштейновские чтения по термомеханической обработке металлических материалов», Москва, МИСиС, 1996; 1-й Российской конференции «Трубы России – 2004», Екатеринбург, 2004; V Всероссийской конференции «Механика микронеоднородных материалов и разрушение», Екатеринбург, 2008; XIX школе металловедов-термистов, Екатеринбург, 2008 и др.
Публикации. По материалам диссертации опубликовано 42 печатные работы.
Личный вклад диссертанта состоит в постановке задач исследования, выборе композиций сталей и методик их исследования, в получении экспериментальных результатов, их обработке и анализе, формулировании основных положений и выводов работы.
Структура и объем диссертации. Работа состоит из введения, 7 глав, объединенных в две части, выводов по каждой главе и заключения по диссертации, списка использованной литературы, включающего 231 работ отечественной и зарубежных авторов, и приложения со сведениями о практической реализации работы. Диссертация изложена на 310 страницах машинописного текста, содержит 90 рисунков и 17 таблиц.