Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Постановка и решение задач механики при создании электромагнитной системы токамака Алексеев, Александр Борисович

Постановка и решение задач механики при создании электромагнитной системы токамака
<
Постановка и решение задач механики при создании электромагнитной системы токамака Постановка и решение задач механики при создании электромагнитной системы токамака Постановка и решение задач механики при создании электромагнитной системы токамака Постановка и решение задач механики при создании электромагнитной системы токамака Постановка и решение задач механики при создании электромагнитной системы токамака
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Алексеев, Александр Борисович. Постановка и решение задач механики при создании электромагнитной системы токамака : диссертация ... доктора технических наук : 01.04.13, 01.02.06 / Алексеев Александр Борисович; [Место защиты: Науч.-исслед. ин-т электрофизической аппаратуры им. Д.В. Ефремова].- Санкт-Петербург, 2010.- 312 с.: ил. РГБ ОД, 71 11-5/286

Введение к работе

Актуальность проблемы. Одним из наиболее перспективных направлений в современной энергетике является создание установок для осуществления управляемого термоядерного синтеза (УТС). Практическая реализация УТС позволит обеспечить человечество фактически неисчерпаемым источником энергии. Среди различных устройств, создающих условия, необходимые для УТС, наибольшее распространение получили установки с магнитным удержанием плазмы - токамаки. В мире построено всего около 300 токамаков, и за последние десятилетия получены обнадеживающие результаты. Первым экспериментальным термоядерным реактором должна стать установка ИТЭР. Эскизное проектирование ИТЭР было начато в 1988 г., в 2005 г. закончилась разработка технического проекта. Соглашение о строительстве ИТЭР было подписано в ноябре 2006 г. Сейчас идет строительство этой установки.

Важнейшим элементом любого токамака является электромагнитная система (ЭМС). Создаваемые этой системой электромагнитные поля служат для формирования и удержания плазмы. В установке ИТЭР будут использованы сверхпроводящие магниты, работающие при температуре жидкого гелия (4,2 К). В исследовательских токамаках меньшего размера, таких как, например, Глобус-М, КТМ применяются медные обмотки.

ЭМС ИТЭР представляет собой гигантское сооружение. Внешний диаметр ЭМС – 25 м, высота – 15 м. Общий вес ЭМС с силовыми конструкциями составляет примерно 10 тысяч тонн. ЭМС состоит из 18 D-образных катушек тороидального магнитного поля (КТП), образующих тор, 6 кольцевых катушек полоидального магнитного поля (КПП), центрального соленоида (ЦС), состоящего из 6 секций, и 18 корректирующих катушек. Тороидальный магнит создает магнитное поле 5,3 Тл на оси плазмы. Максимальная индукция магнитного поля достигает 13 Тл в ЦС, а полная запасенная электромагнитная энергия – 51,4 ГДж. Для сверхпроводящих обмоток используются Nb3Sn и NbTi проводники, обеспечивающие высокую плотность тока.

Одной из важнейших задач при создании ЭМС является выполнение расчетов в обоснование прочности конструкции. ЭМС современного токамака – это сложная, высоконагруженная и, в каждом случае, уникальная конструкция. Расчеты ЭМС токамака включают в себя как традиционную часть - определение напряженно-деформированного состояния, вызванного механическими и температурными нагрузками, оценку прочности и ресурса, так и такие специфические расчеты, как анализ магнитоупругой устойчивости, термомеханические расчеты захолаживания сверхпроводящих магнитов, анализ термомеханики разъёмных контактных соединений и др. Ввиду особенностей конструкции и условий нагружения такие расчеты представляют собой сложную научно-техническую проблему, требующую развития новых научных методик.

Данная работа посвящена постановке и решению ряда задач механики, стоящих на пути создания ЭМС современных токамаков, прежде всего, таких как ИТЭР.

Во-первых, ЭМС ИТЭР представляет собой пространственную магнитомеханическую конструкцию с токонесущими обмотками и силовыми элементами. В результате взаимодействия электрических токов и создаваемых ими магнитных полей возникают огромные пондеромоторные силы, приводящие к механическому нагружению магнитной системы. Полная радиальная сила на одну КТП составляет 402 MН, а разрывающая вертикальная сила на половину КТП - 205 MН. Генерируемые системой КПП полоидальные магнитные поля создают дополнительные циклические распределенные силы, действующие на КТП в тороидальном направлении (из плоскости катушки) и стремящиеся опрокинуть систему катушек. Значительные циклические механические нагрузки действуют также на ЦС и КПП. Для восприятия этих нагрузок служат стальные корпуса КТП и дополнительные силовые конструкции. Пондеромоторные силы являются основными определяющими механическими нагрузками при расчетах на прочность ЭМС токамака. В «тёплых» ЭМС большое значение имеют также температурные воздействия. Другие проектные нагрузки, такие как вес или давление хладоагента обычно пренебрежимо малы.

Для оценки статической и циклической прочности конструкции ЭМС необходимо определить напряженно-деформированное состояние (НДС) ЭМС, вызванное действием проектных нагрузок. Для этого необходимо выбрать наиболее подходящие расчетные схемы, построить расчетные модели, приложить внешние нагрузки, определить НДС для всех режимов работы. Таким образом, первая задача состоит в определении напряженно-деформированного состояния и оценке прочности при рабочих режимах, включая аварийные ситуации.

Во-вторых, магнитомеханическое взаимодействие токонесущих элементов может стать также причиной потери устойчивости ЭМС. В исходном состоянии положение элементов ЭМС характеризуется осевой и циклической симметрией. Однако при отклонении от этого состояния возникают дополнительные упругие и электромагнитные силы. Упругие внутренние силы являются стабилизирующими (восстанавливающими) положение равновесия, в то время как электромагнитные силы могут быть стабилизирующими или дестабилизирующими в зависимости от конфигурации системы и направления токов. В случае малых отклонений можно ввести понятие магнитной жесткости. Упругая жесткость всегда положительна. В случае дестабилизирующих магнитных сил, когда эти силы действуют в направлении отклонения, магнитная жесткость отрицательна и возможна потеря устойчивости. Для обеспечения устойчивости система должна иметь достаточно большую упругую жесткость. Вторая задача заключается в анализе магнитоупругой устойчивости ЭМС.

В-третьих, ЭМС крупного современного токамака, такого как ИТЭР, является сверхпроводящей и работает при криогенной температуре около 4,2 К. Захолаживание обмоток и силовых конструкций до рабочей температуры сопровождается возникновением температурных градиентов и механических напряжений. Значительные размеры ЭМС и применение композитных материалов для сверхпроводящих обмоток делает проблему обеспечения прочности при захолаживании весьма актуальной для ИТЭР. Захолаживание с низким темпом приводит к снижению температурных градиентов и напряжений, однако увеличивает продолжительность захолаживания. Необходимо расчетным путем выбрать приемлемый сценарий захолаживания как с точки зрения времени, так и условий прочности. Таким образом, третья рассматриваемая задача состоит в разработке методик расчета температурных полей и исследовании напряженно-деформированного состояния с целью оценки прочности и оптимизации захолаживания ЭМС.

В-четвёртых, невозможно изготовить и собрать элементы ЭМС с абсолютной точностью. Отклонения от идеальной геометрии (искажение формы, неравномерные зазоры, неплотное прилегание сопрягаемых элементов и др.) могут привести к появлению дополнительных напряжений в конструкции ЭМС. Особенно это становится актуальным для крупных токамаков, таких как ИТЭР и KSTAR. Важно не только знать к каким перегрузкам могут привести геометрические отклонения, но и определить границы допустимости этих отклонений, т.к. это влияет на требования к допускам на изготовление и сборку ЭМС. Ясно, что чрезмерное ужесточение этих требований может сильно увеличить стоимость изготовления и сборки. С другой стороны, большие отклонения могут привести к недопустимо высоким механическим напряжениям в конструкции. Кроме этого, в процессе изготовления элементов ЭМС, например, в результате гибки проводника в кожухе проводника возникают остаточные напряжения, которые необходимо учитывать при оценке ресурса конструкции. При этом, внося изменения в традиционные процессы изготовления, можно получить благоприятное распределение остаточных напряжений в конструкции. Следовательно, необходимо исследовать влияние напряжений, связанных с изготовлением и сборкой, на НДС и прочность ЭМС.

И наконец, в-пятых, оценка прочности невозможна без соответствующих нормативных документов. Необходимо сравнить расчетные величины действующих напряжений с допускаемыми значениями. На данный момент не существует специальных норм расчета на прочность ЭМС токамака-реактора. При проектировании и расчете на прочность несверхпроводящих ЭМС экспериментальных установок для исследования управляемого термоядерного синтеза обычно используются нормы и стандарты, разработанные для оборудования атомных энергетических установок. Хотя эти нормы не учитывают особенности нагружения электромагнитными силами, они в достаточной мере задают критерии для предотвращения статических и циклических разрушений, характерных для конструкций, работающих при комнатной и повышенной температуре. Однако сверхпроводящие ЭМС проектов крупных современных установок, таких как ИТЭР, обладают рядом особенностей, которые потребовали разработки специального набора нормативных документов для расчета на прочность.

Таким образом, решение перечисленных задач является актуальным при создании ЭМС установок типа токамак для исследования управляемого термоядерного синтеза.

Диссертация выполнена в соответствии с планом научно-технических работ, проводимых в Федеральном унитарном государственном предприятии «НИИ электрофизической аппаратуры им. Д.В. Ефремова», в соответствии с Координационным планом по Государственной научно-технической программе “УТС и плазменные процессы”, а также в соответствии с Федеральной целевой программой “Международный термоядерный реактор ИТЭР” на 2002-2005 гг. (Постановление Правительства РФ № 604 от 21.08.2001), Федеральной целевой научно-технической программой “Международный термоядерный реактор ИТЭР и научно-исследовательские и опытно-конструкторские работы в его поддержку” на 1999-2001 гг. (Постановление Правительства РФ № 1417 от 01.12.1998) и Федеральной целевой программой “Международный термоядерный реактор ИТЭР и научно-исследовательские и опытно-конструкторские работы в его поддержку” на 1996-1998 гг. (Постановление Правительства РФ № 1119 от 19.09.1996).

Цель работы. Цель диссертационной работы состоит в постановке и решении следующих задач механики для обоснования прочности при создании ЭМС токамака:

  1. определение НДС и оценка прочности ЭМС токамака для проектных нагрузок, включая аварийные ситуации;

  2. анализ магнитоупругой устойчивости ЭМС токамака;

  3. исследование термомеханического состояния ЭМС при захолаживании;

  4. анализ влияния изготовления и сборки на механическое состояние и ресурс ЭМС;

  5. разработка норм расчета на прочность ЭМС ИТЭР.

Научная новизна и результаты, выносимые на защиту. Впервые обобщены и систематизированно представлены основные задачи механики при создании ЭМС токамака на основе многолетнего опыта выполнения расчетов на прочность ЭМС токамаков различных конструкций, включая макеты и модельные катушки. В диссертации приведены следующие результаты:

  1. На основе анализа ЭМС ИТЭР и других установок представлены основные методики и результаты проведенных исследований напряженно-деформированного состояния и оценки прочности композитных обмоток и силовых элементов с учетом особенностей конструкции и условий нагружения. С использованием метода суперпозиции разработана методика анализа механического состояния ЭМС при произвольных комбинациях токов в катушках полоидального магнитного поля и центрального соленоида. Выполнен расчет на прочность ЭМС ИТЭР для ряда аварийных ситуаций.

  2. Проведен анализ напряженно-деформированного состояния и прочности модельных катушек ЭМС ИТЭР в поддержку экспериментальных исследований сверхпроводящих обмоток.

  3. Построены математические модели электромагнитной системы токамака для исследования магнитоупругой устойчивости. С использованием построенных математических моделей получены аналитические решения задач магнитоупругой устойчивости систем катушек тороидального и полоидального магнитного поля ЭМС различных конфигураций. Разработана методика учета влияния магнитных жесткостей при анализе устойчивости ЭМС с применением стандартных конечно-элементных расчетных комплексов. Проведено исследование магнитоупругой устойчивости ЭМС вариантов проекта ИТЭР и Т-15Д.

  4. Разработана методика расчета температурных полей при захолаживании анизотропных обмоток произвольной конфигурации. Проведено сравнение результатов расчета захолаживания модельной катушки центрального соленоида ИТЭР с экспериментальными данными, которое подтвердило применимость разработанной методики для инженерных расчетов. Получены аналитические выражения для температур и проведен расчет захолаживания катушки тороидального магнитного поля ЭМС ИТЭР. Построена конечно-элементная модель КТП ЭМС ИТЭР и выполнен расчет напряженно-деформированного состояния при захолаживании с учетом рассчитанных температурных полей, а также проведена оценка прочности и даны рекомендации по оптимизации сценария захолаживания.

  5. Решены следующие задачи механики, связанные с изготовлением и сборкой ЭМС:

- разработана методика анализа влияния неточностей изготовления и сборки на напряженно-деформированное состояние силовых элементов ЭМС с помощью конечно-элементного моделирования и проведено исследование системы катушек тороидального поля установки ИТЭР;

- выполнен анализ влияния остаточных напряжений на циклическую прочность кожуха проводника катушек полоидального магнитного поля установки ИТЭР в результате гибки на заданный радиус;

- предложен способ изготовления равнопрочного бескаркасного соленоида, защищенный патентом РФ.

  1. Впервые разработаны нормы расчета на прочность сверхпроводящей электромагнитной системы токамака.

Практическая ценность. Выполненные в диссертационной работе исследования проводились на этапах проектирования ЭМС различных токамаков и имеют следующее практическое значение:

  1. Представленные расчетные модели и разработанные подходы к определению напряженно-деформированного состояния электро-магнитных систем охватывают все основные типичные проблемы механики ЭМС токамаков и показывают практические пути их решения.

  2. Предложенный метод определения напряженно-деформированного состояния магнитной системы токамака на основе суперпозиции откликов системы на воздействия электромагнитных сил, созданных отдельными катушками, является эффективным инструментом для анализа по критериям прочности допустимости различных комбинаций токов в ЭМС.

  3. Разработанные методики, математические модели и полученные аналитические решения применимы для анализа напряженно-деформированного состояния, магнитоупругой устойчивости и оценки прочности электромагнитных систем токамаков и других электрофизических установок.

  4. Разработанные методики и математические модели применимы для расчета температурных полей в анизотропных сверхпроводящих обмотках произвольной формы при захолаживании. С помощью асимптотического анализа получены аналитические выражения для квазистатических температурных полей в обмотках и корпусах катушек при захолаживании с постоянным темпом.

  5. Проведенный анализ влияния геометрических отклонений на напряженно-деформированное состояние системы катушек тороидаль-ного магнитного поля проекта ИТЭР был использован для разработки обоснованных требований к допускам на изготовление и сборку силовых конструкций системы.

  6. Предложенный способ изготовления равнопрочного бескаркасного соленоида может быть использован для увеличения токонесущей способности и ресурса высоконагруженных компонентов магнитных систем различного назначения.

  7. Разработанные нормы расчета на прочность были приняты и использовались при проектировании ЭМС ИТЭР. Они являются основой дальнейшего развития нормативных документов, необходимых для обеспечения прочности, надежности и безопасности сверхпроводящих электромагнитных систем установок в области исследования и практического применения управляемого термоядерного синтеза.

  8. Полученные в диссертации результаты включены в состав технической документации ряда проектов токамаков (ИТЭР, KSTAR, КТМ, Глобус-М, Т-15М, Т-15Д, ТСП-АСТ).

Достоверность результатов подтверждается

- опытом эксплуатации действующей установки Глобус-М и успешным завершением пуско-наладочных работ на установке KSTAR;

- успешным выполнением экспериментальных исследований на модельных катушках ЭМС ИТЭР;

- совпадением результатов, полученных с помощью различных аналитических и численных моделей;

- сопоставлением результатов, представленных в диссертации, с результатами других авторов, полученными в рамках дублирования работ, принятого в проекте ИТЭР для наиболее ответственных расчетов;

- сравнением полученных результатов с экспериментальными данными.

Результаты исследований, представленные в диссертации применительно к проекту ИТЭР, неоднократно представлялись на технических совещаниях, прошли соответствующую международную экспертизу и включены в базы данных и опубликованные материалы технического проекта ИТЭР.

Личный вклад автора является основным на всех этапах постановки и решения задач, а также этапах анализа и практического приложения полученных в диссертации результатов. Приведенные в диссертации результаты получены автором лично либо при его непосредственном участии в качестве руководителя лаборатории.

В рамках международного разделения труда на этапе технического проектирования установки ИТЭР автор координировал и выполнял работы по механике электромагнитной системы ИТЭР в РФ.

Таким образом, представленный в работе анализ механики и прочности электромагнитной системы токамака можно квалифицировать как существенный, научно обоснованный вклад в решение крупной научно-технической проблемы «Разработка и создание электрофизической аппаратуры для исследований по проблеме управляемого термоядерного синтеза».

Апробация работы. Основные результаты диссертации обсуждались на семинарах НИИЭФА, докладывались на рабочих совещаниях в РНЦ КИ (г. Москва), ФТИ (г. С.-Петербург), на международных совещаниях по проекту ИТЭР (Россия, Япония, США, Франция), KSTAR (г. Дайджон, Корея), а также представлялись на конференциях и семинарах: IV Межреспубликанской конференции “Проблемы повышения прочности элементов машиностроительных конструкций” (г. Харьков, 1986), Пятой Всесоюзной конференции по инженерным проблемам термоядерных реакторов (г. Ленинград, 1990), 19th Symposium on Fusion Technology (г. Лиссабон, Португалия, 1996), 6th IAEA Technical Committee Meeting on “Developments in Fusion Safety” (г. Нака, Япония, 1996), 15th International Conference on Magnet Technology (г. Пекин, Китай, 1997), Шестой Всесоюзной конференции по инженерным проблемам термоядерных реакторов (г. С.-Петербург, 1997), III научно-техническом семинаре “Актуальные проблемы прочности материалов и конструкций при низких и криогенных температурах” (г. С.-Петербург, 1997), 20th Symposium on Fusion Technology (г. Марсель, Франция, 1998), 5 International congress of mathematical modeling (г. Дубна, 2002), Седьмой Всесоюзной конференции по инженерным проблемам термоядерных реакторов (г. С.-Петербург, 2003), X Международной научно-технической конференции “Проблемы ресурса и безопасной эксплуатации материалов” (г. С.-Петербург, 2004), Международной научно-технической конференции “Прочность материалов и конструкций при низких температурах” (г. Киев, 2010).

Публикации. Материал диссертации представлен в 34 печатных работах, список которых приведен в конце автореферата, из них 13 – в изданиях, рекомендованных ВАК РФ для публикаций материалов докторских диссертаций.

Объем и структура диссертации. Работа изложена на 294 машинописных листах, состоит из введения, пяти глав и заключения, содержит 141 рисунок и 28 таблиц. Список цитируемой литературы состоит из 164 наименований.

Соответствие диссертации паспорту научной специальности. Содержание диссертации соответствует п. 3 паспорта специальности 01.04.13 – Электрофизика, электрофизические установки: “Создание установок для получения сильных и сверхсильных магнитных полей на базе сверхпроводящих магнитных систем” и п. 9 паспорта специальности 01.02.06 – Динамика, прочность машин, приборов и аппаратуры: “Математическое моделирование поведения технических объектов и их несущих элементов при статических, динамических, тепловых, коррозионных и других воздействиях”.

Похожие диссертации на Постановка и решение задач механики при создании электромагнитной системы токамака