Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Экспериментальное исследование энергетического баланса динамически нагруженной меди Николаева Елена Алексеевна

Экспериментальное исследование энергетического баланса динамически нагруженной меди
<
Экспериментальное исследование энергетического баланса динамически нагруженной меди Экспериментальное исследование энергетического баланса динамически нагруженной меди Экспериментальное исследование энергетического баланса динамически нагруженной меди Экспериментальное исследование энергетического баланса динамически нагруженной меди Экспериментальное исследование энергетического баланса динамически нагруженной меди
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Николаева Елена Алексеевна. Экспериментальное исследование энергетического баланса динамически нагруженной меди : диссертация ... кандидата физико-математических наук : 01.02.04 / Николаева Елена Алексеевна; [Место защиты: Ин-т механики сплошных сред УрО РАН].- Пермь, 2007.- 137 с.: ил. РГБ ОД, 61 07-1/1209

Введение к работе


Актуальность темы.
В связи с развитием ряда областей новой техники и внедрением в промышленность новых перспективных технологий обработки материалов большой научный и практический интерес вызывает исследование процессов высокоскоростного деформирования различных материалов, в том числе определение их деформационных, прочностных и термодинамических характеристик при построении определяющих соотношений теории пластичности.

В последние годы значительное число экспериментальных работ было посвящено исследованию эволюции температуры поверхности образцов, подвергающихся высокоскоростному деформированию, с помощью радио-метрических приёмников, инфракрасных камер и т.п. с целью оценки диссипативной доли энергии, затраченной в процессе деформирования. Как показали исследования, эта доля далеко не исчерпывает всей затраченной энергии. В существующих попытках описать процесс накопления энергии в качестве переменной используется остаточная деформация. Очевидна некорректность такого подхода, поскольку остаточная деформация не является однозначной функцией процесса деформирования. Естественный путь поиска истинной внутренней переменной предполагает вскрытие физического механизма накопления энергии. В этом случае для описания процесса накопления энергии открывается возможность использования мощного аппарата классической термодинамики.

Существенной характеристикой состояния является микроструктура, которая зависит от истории нагружения, приводящей образец к определённой деформации. К настоящему времени выполнено огромное количество экспериментальных исследований, посвящённых изучению микроструктурных характеристик материалов, как после деформирования, так и непосредственно в процессе их деформирования (с помощью электронного микроскопа). Однако, на сегодняшний день не существует теории, непосредственно связывающей процесс деформирования с результатами подобных исследований. Понимание физики этого процесса, в том числе и релаксационных процессов, неизбежно сопровождающих деформирование, может дать дополнительные возможности исследований пластического деформирования материалов.

Принято считать, что разрезной стержень Гопкинсона-Кольского [1] позволяет проводить исследования материалов в квазистатических условиях. Между тем, в обычных квазистатических условиях релаксационные процессы в материале идут одновременно с деформированием. В разрезном стержне Гопкинсона-Кольского время деформирования образца очень мало (40-80мкс) по сравнению с продолжительностью релаксационных процессов в материале (порядка 10с). Вследствие малого времени нагружения образца дефор-мирование осуществляется в адиабатических условиях, что позволяет наблюдать изменение температуры образца до, во время и сразу после деформирования, и исследовать по отдельности процессы деформации и релаксации материала.

Цель работы. Целью работы является экспериментальное исследование энергетического баланса меди, подвергнутой высокоскоростному деформи-рованию на разрезном стержне Гопкинсона-Кольского.

Адиабатические условия деформирования образцов на разрезном стержне Гопкинсона-Кольского дают возможность определить соотношение долей выделенного тепла и запасённой энергии в полной механической работе, затраченной на деформирование. Изучение по отдельности процессов дефор-мирования и релаксации материала имеет целью вскрыть физический механизм накопления энергии в его структуре.

Научная новизна.

  1. Разработан способ однократного нагружения образцов в экспери-ментальной установке, обеспечивающий минимальное время контакта образца с мерными стержнями, что позволяет корректно определять тепловую долю энергии деформирования сразу после нагружения.

  2. Разработаны, спроектированы и изготовлены оптический датчик перемещений и электромагнитный датчик скорости перемещений.

  3. Впервые в подобную экспериментальную установку встроен адиаба-тический калориметр для измерения тепла, выделенного образцом в результате динамического сжатия.

  4. Разработана оригинальная методика измерения разуплотнения дефор-мированных образцов на основе метода гидростатического взвешивания, позволяющая исключить влияние трудно контролируемых небольших вариаций плотности рабочей жидкости.

  5. Предложена оригинальная схема проведения динамического экспери-мента, заключающаяся в последовательном нагружении образцов и измерении на каждом этапе тепла, выделенного образцом, микро- и макротвёрдости и разуплотнения материала.

  6. Обнаружено, что характерное время релаксационного процесса для меди имеет величину порядка 10с при нормальных условиях. Впервые удалось наблюдать процесс установления температуры в образце, связанный с эволюцией зернограничной фазы непосредственно после окончания процесса деформирования.

Положения, выносимые на защиту:

  1. Оригинальная экспериментальная установка – разрезной стержень Гопкинсона-Кольского, реализующая однократное нагружение образца с усовершенствованным методом его извлечения после процесса деформи-рования.

  2. Оригинальная схема эксперимента с последовательным нагружением образцов и измерением баланса энергии процесса деформирования. Для определения тепловой составляющей энергии впервые в подобную экспериментальную установку встроен адиабатический калориметр.

  3. Оригинальная конструкция электромагнитного датчика скорости перемещения, который обладает существенными преимуществами по сравнению с датчиками тензорезистивного типа. Калибровки электро-магнитного датчика показали хорошую повторяемость результатов и стабильность работы. Высокий рабочий ресурс датчика позволяет рекомендовать его к применению на разрезном стержне Гопкинсона-Кольского и аналогичной экспериментальной технике.

  4. Оригинальная конструкция оптического датчика перемещений для измерения деформации образца, позволяющая осуществлять измерения величины деформации образца без использования численных процедур.

  5. Результаты исследования процесса запасения энергии медными образцами при последовательном нагружении образцов и при одно-разовом нагружении образцов с возрастающей величиной остаточной деформации.

  6. Механизм накопления энергии в структуре материала образца в результате динамического сжатия, показывающий, что исследуемый поликристаллический материал нельзя рассматривать как однофазную систему, что имеет решающее значение в написании определяющих уравнений пластичности с учётом термодинамических закономерностей процесса высокоскоростного деформирования.

Личный вклад автора. Автор принимал непосредственное участие во всех экспериментальных исследованиях. Автором проведена обработка всех экспериментальных данных. Автор внёс вклад в обсуждение и интерпретацию полученных результатов.

Практическая ценность.

  1. Разработан и спроектирован электромагнитный датчик массовой скорости, обладающий высокой стабильностью и надёжностью работы, имеющий существенно больший ресурс по сравнению тензодатчиками резистивного типа. Высокие метрологические характеристики и хорошая повторяемость характеристик датчиков позволяют рекомендовать их к широкому использованию на разрезном стержне Гопкинсона-Кольского.

  2. Разработан и спроектирован оптический датчик перемещений, который может использоваться, в том числе для проведения измерений в технике прямого удара ”direct-impact”.

  3. Полученные экспериментально механические и теплофизические харак-теристики могут найти применение для создания моделей пластичности, учитывающих тепловые процессы.

Апробация работы.

По результатам диссертационной работы опубликовано 7 научных статей и 7 тезисов. Основные положения и результаты работы докладывались на 7 всероссийских конференциях.

Часть результатов работы была получена в рамках проектов МНТЦ №1181, №2146, проектов РФФИ №02-01-00736, №05-08-33652а, №04-01-96009-р2004урал_а.

Объём работы. Диссертационная работа состоит из введения, четырёх глав и выводов по результатам исследования. Работа изложена на 137 страницах и содержит 60 рисунков, 20 таблиц, список цитируемой литературы состоит из 111 наименований.

Похожие диссертации на Экспериментальное исследование энергетического баланса динамически нагруженной меди