Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов Тарасова Татьяна Сергеевна

Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов
<
Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Тарасова Татьяна Сергеевна. Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов : диссертация ... кандидата технических наук : 05.13.18 / Тарасова Татьяна Сергеевна; [Место защиты: С.-Петерб. гос. ун-т телекоммуникаций им. М.А. Бонч-Бруевича].- Санкт-Петербург, 2009.- 175 с.: ил. РГБ ОД, 61 09-5/2618

Введение к работе

Актуальность темы. Компьютерная графика зародилась в 1961 году, когда Айвен Сазерленд продемонстрировал цифровую обработку изображений на экране компьютера. За прошедшие 48 лет развитие компьютерной графики шло бурными темпами. Интенсивное развитие вычислительной техники, математического и программного обеспечения открыло огромные возможности использования компьютерной графики для моделирования изделий и объектов живой природы.

Компьютерное моделирование все больше внедряется в нашу жизнь. Оно практически охватывает все области деятельности человека. Создание новой техники, произведений искусства, виртуальных миров, систем управления не обходится без компьютерного моделирования живых и неживых объектов, их окраски.

Основной проблемой компьютерной графики была и остается необходимость записи, обработки, хранения и передачи огромных объемов компьютерной информации, описывающей реальные пространственные объекты.

Существующие в настоящее время методы компьютерной графики только частично решают эту проблему, идя по пути упрощения описания объектов, снижения числа цветов, снижения геометрической точности описания объектов, уменьшения числа кадров передаваемой информации.

Геометрические компьютерные модели прошли путь развития от упрощенного описания объектов к более сложным описаниям, от растровых, точечных, векторных моделей к аналитическим.

Наибольший интерес представляют аналитические модели, которые позволяют значительно снизить объемы записи моделей, создавать эффективные методы описания моделей, но при этом требуют сложных алгоритмов обработки.

Исследованиями аналитических, и в частности, алгебраических моделей занимались такие известные советские ученые как академик Рвачев В.Л., Стародетко Е.А., Полозов В.С., Цветков В.Д., Горелик А.Г., Дегтярев В.М., зарубежные ученые П. Безье, С. Кунс, У. Павлидис, Д. Роджерс, Дж. Адамс и др.

Тем не менее, остается актуальным необходимость исследования аналитических моделей, решающих основную проблему компьютерной графики - снижение объемов записи, ускорение обработки графической информации, описывающей реальные объекты в реальном времени с необходимой точностью.

В данной работе предлагается метод алгебраического моделирования пространственных раскрашенных объектов с записью в алгебраической компьютерной модели численных значений коэффициентов алгебраических уравнений, что значительно уменьшает объемы записываемой в компьютер информации, сохраняя при этом гладкость, непрерывность, дифференцируемость, идеальную точность описания поверхности пространственного объекта.

Цель и задачи исследований. Целью работы является повышение эффективности компьютерного моделирования пространственных объектов сложной формы и окраски. Эта цель достигается путем решения следующих основных задач:

  1. Анализ компьютерных методов и моделей описаний и раскраски пространственных объектов.

  2. Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов.

  3. Исследование и разработка перспективной модели описания пространственных окрашенных объектов.

  4. Исследование и разработка алгоритмов алгебраического моделирования пространственных окрашенных объектов.

  5. Экспериментальная проверка разработанного метода и сравнение с существующими методами.

Методы исследования. При исследовании использовались методы аналитической, начертательной и дифференциальной геометрии, высшей алгебры, компьютерной графики и программирования.

В качестве инструмента исследования автором было разработано графическое приложение для визуализации алгебраических поверхностей 4-ой степени от 4-х переменных. Данное приложение использовалось для получения визуальных данных в исследовании алгебраических поверхностей, было экспериментальной платформой для внедрения и применения разработанного метода алгебраического моделирования.

Метод наблюдения, базирующийся на фиксации и регистрации изменений, к которым приводят изменения коэффициентов уравнения.

При исследовании уравнения от многих переменных использовался метод дедукции, основанный на получении результатов исследования на базе процесса познания от общего к частному.

Экспериментальная проверка включала в себя использование метода триангуляции алгебраических поверхностей, метода нанесения текстур, методов геометрического моделирования и раскраски, методики сравнения объемов записи полигональной и алгебраической моделей. Метод сравнения и выявления аналогий, позволяющих разработать аналоги использующихся на сегодняшний день методов моделирования, применительно к алгебраическим поверхностям.

Научная новизна. В данной работе предложен новый подход к математическому описанию и раскраске пространственных объектов с помощью алгебраических уравнений любых степеней и многих переменных.

Алгебраическая компьютерная модель представлена в виде численных значений коэффициентов при переменных алгебраических уравнений. Новое представление компьютерной модели потребовало разработки новых математических средств и алгоритмов для обработки численных значений коэффициентов алгебраической компьютерной модели пространственного объекта с целью формирования геометрии объекта, изменения его формы, перемещения, поворота в пространстве, раскраске и визуализации.

Такой подход открыл возможности теоретического использования класса алгебраических уравнений любых степеней и многих переменных для описания геометрических и других взаимосвязанных свойств (цвет, температура, давление, плотность и т.п.), принадлежащих пространственному объекту.

Практическая ценность работы. Исследование алгебраических поверхностей любых степеней и многих переменных, разработка визуальных методов конструирования и раскраски пространственных объектов дает толчок к созданию библиотек алгебраических поверхностей, методик визуального пространственного конструирования и внедрению их в популярные пакеты 3D графики, тем самым, расширяя их функциональные возможности, предоставляя инженерам и дизайнерам новый инструмент для моделирования и проектирования.

Математический аппарат описания поверхностей удобен и доступен для инженерных расчетов, например, в системах автоматического проектирования и в решении задач окраски объектов с учетом фоновой поверхности, например, подстилающей поверхности.

Компактность представления алгебраическими уравнениями формы объекта и его негеометрических свойств, компактность представления функциональной зависимости между геометрией и такими свойствами, как раскраска, температура, плотность и т.д., важно также в таких областях, как всемирная паутина Internet (Web3D графика, 3D интерфейсы пользователей). Моделирование алгебраическими поверхностями так же может быть использовано в области архитектурной визуализации, в кинематографе и телевидении (например, для создания спецэффектов), в компьютерных играх, в системах виртуальной реальности, в научных исследованиях оно позволяет активизировать свойственную человеку способность мыслить сложными пространственными образами.

Апробация работы. Результаты работы докладывались:

  1. На научно-технических конференциях профессорско-преподавательского состава, научных сотрудников и аспирантов ГУТ им. проф. М.А. Бонч-Бруевича: № 57 2005 г., № 58 2006 г., № 59 2007 г., № 60 2008 г.;

  2. на международных конференциях «Неразрушающие методы и компьютерное моделирование в науке и технике» (Санкт-Петербург): № 9, NDTCS-2005 и № 10, NDTCS-2006;

  3. на заседаниях секции дома ученых им. М. Горького (РАН) «Начертательной геометрии, графики и автоматизации проектирования» в 2005 г. и 2007 г.;

  4. на семинарах IV Российско-Германской студенческой школы JASS’07, Санкт-Петербург, 25.03-04.04.2007;

Реализация результатов работы. Результаты диссертационной работы использовались:

при проведении научно-технических разработок в ФГУП ЦНИИМ в НИР по проекту «Мост» выполненному по программе «Западный скоростной диаметр» при разработке «Методов цветовой защитной окраски поверхностей объектов» для проектирования морских объектов;

в учебном процессе кафедры «Инженерной машинной графики» Санкт–Петербургского государственного университета телекоммуникаций при чтении лекций и проведении практических занятий по дисциплинам инженерная и компьютерная графика, компьютерная геометрия и графика, компьютерная графика;

Основные положения, выносимые на защиту:

Результаты анализа компьютерных методов описаний и раскраски пространственных объектов.

Предложенный метод алгебраического моделирования пространственных окрашенных объектов.

Компьютерная модель и алгоритмы алгебраического моделирования пространственных раскрашенных объектов.

Результаты экспериментальной проверки и сравнения разработанного метода с полигональным методом.

Личный вклад автора. Основные научные положения, теоретические выводы и рекомендации, анализ результатов поставленных экспериментов, содержащиеся в диссертационной работе, получены автором самостоятельно.

Публикации. По теме диссертации опубликовано 5 научных работ, две из них – в изданиях, входящих в перечень ВАК.

Структура и объем диссертации. Диссертация состоит из введения, 4 глав, заключения, списка литературы, включающего 100 наименований, и двух приложений. Работа изложена на 147 страницах основного текста, содержит 78 рисунков, объем приложения составляет 28 страниц.

Похожие диссертации на Исследование и разработка метода алгебраического моделирования пространственных окрашенных объектов