Содержание к диссертации
Введение
1. Состояние вопроса. Задачи исследования 8
1.1 .Обзор исследований в области деформирования древесины 8
1.2. Цели и задачи исследования 24
2. Теоретическая часть 26
2.1. Современные модели деформирования древесины 26
2.2. Эффект памяти формы в материалах 37
2.3. Модель гигро(термо)-механических деформаций древесины ... 43
2.4. Эффект «памяти» древесины 49
2.5. Зависимость усушки древесины от падения влажности 60
3. Разработка методики экспериментального исследования 65
3.1. Исследование гигро(термо)-механических деформаций древесины 65
3.2. Исследование нелинейности усушки 87
4. Результаты экспериментов и их обсуждение 91
4.1. Эффект памяти древесины при действии нагрузки одного знака и изменении температуры 91
4.2. Эффект памяти древесины при смене знака нагрузки и изменении температуры 108
4.3. Эффект памяти древесины при последовательном или одновременном изменении температуры и влажности 119
4.4. Определение дифференциальных коэффициентов усушки 132
5. Использование термо- и влагозамороженных деформаций древесины для устранения гофрированности лущеного шпона 141
5.1. Технологические аспекты деформационных превращений древесины 141
5.2. Причины возникновения гофрированности листа шпона 147
5.3. Варианты использования замороженных деформаций для устранения гофрированности шпона 155
5.4. Приближенное решение задачи о влиянии шага установки роликов на величину гофрированности 159
5.5. Расчет величины необходимой нагрузки 172
5.6. Практические рекомендации по улучшению качества шпона... 177
Заключение 183
Список литературы
- Цели и задачи исследования
- Модель гигро(термо)-механических деформаций древесины
- Исследование нелинейности усушки
- Эффект памяти древесины при последовательном или одновременном изменении температуры и влажности
Введение к работе
Актуальность темы. Во многих технологических процессах деревообработки древесина подвергается одновременному воздействию нагрузок, влажности и температуры. При изменении влажности и температуры нагруженной древесины происходят деформационные превращения, которые проявляются в переходе одних видов деформаций в другие и возникновении новых деформаций. В связи с этим древесиноведческое исследование явлений, происходящих под влиянием указанных факторов, представляет актуальную проблему. Учет и использование этих явлений позволяет совершенствовать существующие и создавать новые эффективные технологии, улучшать качество изделий.
Цель работы. Цели данной работы состояли в том, чтобы экспериментально исследовать влияние нагрузки, влажности и температуры на деформационное поведение древесины при различных комбинациях указанных факторов. Необходимо установить также возможность использования эффекта перерождения деформаций для устранения одного из дефектов сушки лущеного шпона в ленточных сушильных камерах - гофрированности листа.
Научная новизна работы. Экспериментально определены термо- и влагозамороженные деформации древесины. Впервые экспериментально исследован эффект деформационной «памяти» древесины, проявляющийся в изменении деформаций при нагревании разгруженной древесины. Установлена способность древесины запоминать вид приложенной нагрузки (растяжение, сжатие). Предложен метод индикации вида замороженных деформаций. Исследованы влаго-термозамороженные деформации, образующиеся при последовательном или одновременном снижении влажности и температуры нагруженной древесины. Установлено наличие синергетического эффекта, который проявляется в том, что при одновременном изменении температуры и влажности величина образованной замороженной деформации оказывается
5 выше, чем при изолированном действии указанных факторов. Определены дифференциальные коэффициенты усушки, зависящие от диапазона снижения влажности.
Практическая ценность работы. Предложены способы устранения гофрированности листа шпона, основанные на образовании замороженных деформаций. Определены основные параметры секции охлаждения сушильной камеры и даны режимы термомеханической обработки для устранения названного дефекта на стадии охлаждения шпона.
На защиту выносятся следующие основные положения:
соотношения между составляющими общей деформации (упруго-эластическими, деформациями ползучести и замороженными деформациями) при различных историях деформирования;
механизм деформационной «памяти» древесины на температурно-влажностные воздействия;
способность древесины «запоминать» вид приложенной нагрузки путем образования соответствующих замороженных деформаций;
синергетический эффект одновременного воздействия температуры и влажности при образовании замороженных деформаций;
закономерности влажностных деформаций ненагруженной древесины, определение дифференциальных коэффициентов усушки древесины лиственных пород;
способы и средства устранения гофрированности листа шпона, основанные на образовании замороженных деформаций
Апробация работы. Основные положения диссертационной работы
докладывались на III Международном симпозиуме «Строение, свойства и
качество древесины - 2000» (Петрозаводск, 2000), III и IV симпозиумах
ИЮФРО «Wood Structure and Properties» (Зволен, Словакия, 1998, 2002) ,
Международной научно-практической конференции «Современные
энергосберегающие тепловые технологии (сушка и термовлажностная
обработка материалов)» (МГАУ, Москва, 2002), ежегодных научно-
технических конференциях МГУЛ (1999-2003 гг.), семинарах Регионального Координационного совета по современным проблемам древесиноведения (Черноголовка, 2001; Брянск, 2002; Кострома, 2003).
Публикации результатов работы. По материалам диссертации опубликовано 13 работ.
Структура и объем диссертации. Диссертационная работа содержит введение, пять глав, заключение, список литературы и приложения. Основное содержание изложено на 197 страницах машинописного текста, иллюстрировано 66 рисунками и 9 таблицами. Список использованной литературы включает 134 наименования, из них 56 зарубежных авторов.
Во введении содержится краткая характеристика работы.
В первой главе приведен ретроспективный обзор исследований в области деформативности древесины. Рассмотрены различные виды деформаций древесины. На основе проведенного анализа литературных источников определены цели и задачи исследования.
Во второй главе, состоящей из 5 параграфов, содержатся теоретические обоснования для экспериментальных исследований деформационных превращений древесины при изменении нагрузки, влажности и температуры. В первом параграфе рассмотрены современные модели деформирования древесины. Во втором параграфе приведены сведения об эффекте «памяти» в сплавах металлов и в полимерах. В третьем параграфе изложены основные положения модели гигро(термо)-механических деформаций древесины. В четвертом параграфе рассматриваются проявления эффекта «памяти» древесины: эффект силовой «памяти» и эффект деформационной «памяти» древесины. Пятый параграф посвящен нелинейности зависимости усушки от влажности. Введено понятие дифференциального коэффициента усушки.
В третьей главе изложены стандартные и оригинальные методики экспериментальных исследований.
В четвертой главе, состоящей из четырех параграфов, обсуждаются результаты проведенных исследований. В первом параграфе приведены
7 результаты исследования эффекта «деформационной памяти» древесины при предыстории деформирования, включающей нагружение, последующее охлаждение и разгрузку. Во втором параграфе представлены результаты исследований поведения древесины при предыстории деформирования, включающей смену знака нагрузки на двух уровнях снижения температуры. Третий параграф посвящен особенностям взаимодействия между различными видами замороженных деформаций, который отражается в механизме «деформационной памяти» древесины. Обсуждаются результаты экспериментов для предыстории деформирования, включающих последовательное или одновременное изменение температуры и влажности нагруженной древесины. В четвертом параграфе представлены результаты определения дифференциальных коэффициентов усушки.
Пятая глава, состоящая из шести параграфов, посвящена использованию деформационных превращений для решения ряда технологических задач. В первом параграфе изложены технологические аспекты деформационных превращений при сушке, гнутье, прессовании древесины. Отмечена возможность использования замороженных деформаций для устранения одного из дефектов лущеного шпона. Во втором параграфе рассмотрены причины возникновения гофрированности листа шпона. В третьем параграфе представлены результаты исследования способов использования замороженных деформаций для устранения гофрированности листа. В четвертом параграфе рассмотрено приближенное решение задачи о влиянии шага установки роликов на величину гофрированности листа. В пятом параграфе проведены расчеты величины нагрузки, необходимой для устранения неровностей. В шестом параграфе содержатся практические рекомендации по повышению качества шпона для трех вариантов с использованием эффекта замороженных деформаций.
В заключении сделаны основные выводы по диссертационной работе.
Цели и задачи исследования
Проведенный анализ имеющихся литературных источников показал, что далеко не все вопросы, связанные с деформационными превращениями древесины при изменении нагрузки, влажности и температуры исследованы в достаточной мере.
Цели данной работы состояли в том, чтобы исследовать деформационные превращения древесины при различных комбинациях указанных факторов. Для достижения поставленной цели предполагалось решение следующих задач: I. Исследовать деформационные превращения, проявляющиеся в эффекте «памяти» древесины при различных предысториях деформирования. Предыстория деформирования включает последовательность, вид, величину и скорость нагружения, интервалы и характер изменения температуры и влажности древесины. Предполагается экспериментальное исследование эффекта памяти древесины для следующих предыстории деформирования: 1. Нагружение, последующее охлаждение и разгрузка; 2. Нагружение, охлаждение в данном температурном интервале, разгрузка и последующее повторение процедуры после изменения знака нагрузки и температурного интервала (смена знака нагрузки на двух уровнях снижения температуры); 3. Последовательное высыхание и охлаждение нагруженной древесины с последующими разгрузками; 4. Одновременное снижение температуры и влажности нагруженной древесины, разгрузка. II. Исследовать закономерности влажностных деформаций ненагруженной древесины во всем диапазоне изменения содержания связанной воды.
Определить дифференциальные коэффициенты усушки древесины и установить разницу между стандартным и дифференциальными коэффициентами усушки на разных стадиях процесса.
III. На базе полученных экспериментально-теоретических результатов намечается исследовать возможность устранения одного из распространенных дефектов сушки лущеного шпона в ленточных сушильных камерах -гофрированности листа. 2. Теоретическая часть
Модель деформирования древесины должна включать описание всех возможных видов деформаций, возникающих при изменении различных факторов, таких как, нагрузка, влажность и температура. Несмотря на большое количество работ в этой области, существует ряд объективных трудностей, объясняющих повышенный интерес к этим вопросам. Сложность строения древесины, характера деформационных превращений, происходящих в ней, особенно при одновременном или последовательном изменении нескольких факторов, трудности экспериментальной проверки модели — все это круг проблем при моделировании процесса деформирования древесины.
При использовании моделей для технологических процессов их обычно упрощают, и параметры модели выбираются исходя из конкретных условий деформирования. Каждая предложенная модель имеет довольно ограниченное практическое приложение.
Разнообразные деформационные превращения древесины происходят в технологических процессах гидротермической обработки древесины, например, ее сушке. Сушка является дорогой и весьма сложной операцией в процессах деревообработки. Поэтому поиск эффективных решений в этой области представляет большое значение. Модели деформирования древесины адаптированные к условиям сушки древесины используются для описания напряженно-деформированного состояния при различных способах и режимах этого вида гидротермической обработки.
Основное уравнение деформирования древесины представляет собой сумму различных компонентов деформаций или их производных, иногда встречается запись в матричной форме. Отдельные компоненты деформаций могут быть смоделированы с помощью механических моделей.
В качестве модели идеально упругого тела, подчиняющегося закону Гука, используется пружина. Зависимость между напряжениями т и деформациями є отражается следующим образом
Модель гигро(термо)-механических деформаций древесины
На основании исследований, проведенных в МЛТИ-МГУЛ, был разработан общий закон деформирования древесины при нагружении и изменении ее температуры и влажности [58,131,57]: e = -aW-pT +Я, [ Z-dr + H2 _-, (2.20) где a — коэффициент усушки, p - коэффициент линейного расширения , W — падение влажности от Wm, Т - падение температуры от условного максимума, равного 100 С, Я-функция Хевисайда.
В конце 80-х годов Б.Н. Уголевым была разработана модель гигро(термо)-механических деформаций [132,64], позволяющая описать деформационные превращения в древесине при изменении ее нагрузки, температуры и влажности. Имея в виду температурно-влажностную аналогию, модель пригодна как для термомеханических, так и для случая гигромеханических деформаций древесины.
Известно, что при стабильной влажности (температуре) древесины нагружение приводит к образованию мгновенных и развивающихся во времени деформаций. После разгрузки мгновенно возвращаются упругие деформации єе, затем исчезают эластические деформации $, , и остаются необратимые деформации ползучести єс (рис. 2.8). Модель гигро(термо)-механических деформаций учитывает тот факт, что при изменении влажности и температуры, кроме известных обратимых упругих и эластических деформаций и необратимых деформаций ползучести, образуются квази-необратимые «замороженные» деформации є/. Замороженные деформации возникают под управляющим воздействием нагрузки при сушке (или охлаждении) древесины, которые приводят к увеличению ее жесткости. Этот феномен — следствие временной перестройки надмолекулярной структуры компонентов древесины. При нагревании или увлажнении замороженные деформации исчезают.
Величина их определяется как разница упруго-эластических деформаций в начальном (нагретая или влажная древесина) и конечном (охлажденная или сухая древесина) состояниях. Различают влагозамороженные деформации, полученные при сушке под нагрузкой и термозамороженные деформации, образованные при охлаждении нагруженной древесины.
Модель учитывает также деформации «гигроусталости». В работе [63] было установлено, что после 6 циклов изменения влажности в диапазоне от 12% до 20% прочность и жесткость древесины значительно снизились. Величина модуля упругости уменьшилась на 37% для древесины влажностью 12% и на 40% - при влажности 20%, снижение величины предела прочности составило 44%. Произошло расшатывание структуры древесины, и по аналогии с классическим понятием «усталости» древесины, оно было названо «гигроу стал остью».
Таким образом, общая гигромеханическая деформация ehm может быть представлена как сумма компонентов: ekm=e.+e,+ew+eLw+se+eFt (2.21) где єе - мгновенная, упругая деформация „ - кратковременная, эластическая деформация (упругое последействие) ew - влажностная деформация (усушка и разбухание) eLw — деформация от уменьшения жесткости нагруженной древесины при увлажнении єс — длительная деформация ползучести єF — деформация гигроусталости Используя температурно-влажностную аналогию, уравнение для определения общей термомеханической деформации є(т при изменении температуры нагруженной древесины в условиях стабильной влажности можно записать: єш=єв+є9+є,+єи+єе+єр, (2.22) где є, — температурная деформация єи — деформация от уменьшения жесткости нагруженной древесины при нагревании eF— деформация усталости при многократных циклических изменениях температуры.
Величина собственно температурных деформаций є, ничтожно мала, поэтому их можно исключить из рассмотрения. Влияние циклических изменений температуры на прочность и жесткость древесины не изучено, однако известно влияние повышенных температур на прочность древесины. Очевидно, что расшатывание структуры древесины имеет место при подобных воздействиях, вместе с тем оно меньше, чем при многократных изменениях влажности. Ряд исследователей отмечают также значительные деформации нагруженной древесины при первом нагреве, которые в дальнейшем не изменяются [58,129,82].
Модель позволяет описать напряженно-деформированное состояние древесины при различных историях деформирования. Исследования гигромеханических деформаций древесины липы при испытаниях на растяжение в тангенциальном направлении проведены в работе Б.Н. Уголева, Н.В. Скуратова, Л.В. Поповкиной [64].
Остановим внимание на рассмотрении термомеханических деформаций. В дальнейшем, предполагается более детально выяснить закономерности деформирования при переменной температуре нагруженной древесины и состав термомеханических деформаций.
Можно рассмотреть два основных случая деформирования древесины при изменении жесткости (из-за температуры) и нагрузки. Температурные деформации и деформации от усталости при многократных циклических изменениях температуры не учитываются.
Случай 1. Нагревание - нагружение нагретой древесины - охлаждение. є,т =єе+є„+єс=є„+єсі (2.23) где SeV - упруго-эластическая деформация. Случай 2. Нагружение охлажденной древесины - нагревание -охлаждение. вм е„ + єил-єе. (2.24) В обоих случаях охлаждение нагруженной древесины не изменяет величину общей термомеханической деформации. Разгрузка обнаруживает сет-деформацию: є, = Є; + Єг (2-25) где ef— замороженная деформация. / = еы-еег2 = еьг (2.26) er = ес -остаточная деформация, равная деформации ползучести.
Указанные деформационные превращения можно представить на пространственной диаграмме ст-е-0 (рис. 2.9) с лианеризованными зависимостями. Здесь т - напряжение, є - деформация, в - падение температуры от условной базы (100С).
Исследование нелинейности усушки
В исследовании были использованы также лиственные породы (дуб, бук, клен, груша, черешня), применяемые в производстве паркета и характеризующиеся довольно значительной усушкой.
Определение усушки проводилось от состояния насыщения до абсолютно "сухого состояния. Усушка определялась в двух направлениях: тангенциальном и радиальном.
Величина усушки определялась по ГОСТ 16483.37-88 «Древесина. Метод определения усушки». Согласно стандарту, образцы должны иметь форму четырехгранной прямоугольной призмы с основанием 20x20 мм и высотой вдоль волокон от 10 до 30 мм. Для исследований были изготовлены образцы размерами 20x20x20 мм. Образцы, кроме строго радиального (тангенциального) направления имели и промежуточное (под углом 0 к радиальному) направление. Каждый образец был промаркирован, маркировка включала буквенно-цифровое обозначение: например, «Д — 12» — образец из древесины дуба, №12. Форма и размеры образца показаны на рис. 3.3.
Показателем усушки является влажностная деформация. В работе определялась величина частичной и полной, или максимальной, усушки.
Полная (максимальная) усушка ртт — это уменьшение линейных размеров или объема древесины при удалении всего количества связанной воды [50]. Поэтому для определения величины /?тах влажность древесины должна быть снижена от предела насыщения клеточных стенок до нуля. Вычисляют величину полной усушки ртт в процентах, в %, по формуле: A..10(q--i- , (3.20) max гДе amax размер (объем) образца при влажности равной или выше предела насыщения клеточных стенок, мм (мм3); amin — размер (объем) образца в абсолютно сухом состоянии, мм (мм3).
Текущие значения усушки Д, при снижении влажности от предела насыщения клеточных стенок до влажности W определялись по формуле: = 100(д--О (321) max где aw— размер (объем) образца при влажности W, мм (мм3).
По контрольным образцам весовым способом по ГОСТ 16483.7-71 «Древесина. Метод определения влажности» с погрешностью до 0,1% была вычислена начальная влажность образцов по формуле (3.4). Средние значения полученных величин находились в пределах 40-70%, что соответствует свежесрубленному влажностному состоянию.
Поскольку влажность всех образцов была выше предела насыщения клеточных стенок, размеры при этой влажности принимаются за максимальные.
Для повышения точности замеров был отмечен центр каждой грани образца, где осуществлялись замеры. Размеры образца (длина а, ширина Ь, высота h) измерялись микрометром типа МК по ГОСТ 6507-90 с точностью измерения до 0,01 мм. Высота h - размер образца вдоль волокон.
Каждый образец был взвешен на аналитических весах АДВ-200 с точностью до 0,001г. Результаты замеров и определения массы образца т заносились в лабораторный журнал (форма журнала в приложении).
В табл. 3.2 представлена характеристика подопытного материала, включающая число образцов каждой породы, величину угла наклона годичных слоев для одного из взаимно перпендикулярных направлений (9 45) , значения начальной влажности Wt.
Образцы были помещены в эксикаторы с силикагелем и медленно высушены в течение примерно трех месяцев при постепенно снижающейся влажности воздуха. Довольно низкие скорости изменения влажности воздуха должны обеспечить равномерную сушку и исключить перепад влажности по высоте образца. Кроме того, в качестве дополнительной меры, снижающей неравномерность высыхания образцов, периодически включались вентиляторы, которыми были оснащены эксикаторы. Каждые 5-7 дней проводились измерения размеров образцов в трех направлениях (awl, bwl, hwi) и определялась масса образцов mwi. Поскольку в исследовании использовались образцы разных пород с заметно отличающейся начальной влажностью, в каждой группе имелся образец для контроля влажности. Форма журнала наблюдений приведена в приложении.
На конечной стадии при влажности 3-5% образцы были помещены в сушильный шкаф для достижения абсолютно сухого состояния. Для каждого образца путем взвешивания была определена масса тш и размеры в абсолютно сухом состоянии - a0i, bot, h0l.
Эффект памяти древесины при последовательном или одновременном изменении температуры и влажности
Можно отметить, что после завершения всего цикла испытаний наблюдается остаточная деформация сжатия (0-8). Поскольку время нагружения при растяжении и сжатии было одинаковым, можно предположить, что величина остаточной деформации при сжатии больше, чем при растяжении. Кроме того, нельзя исключать гистерезисные явления, подобное поведение наблюдается также и в сплавах металлов при аналогичной истории деформирования, несмотря на то, что металлы отличаются большей упорядоченностью структуры [4].
Таким образом, если повторное нагружение с обратным знаком практически не приводит к снижению жесткости (см. рис. 4.12), то при смене знака нагрузки и изменении температуры наблюдается некоторое увеличение остаточных деформаций, находящееся, тем не менее, в пределах точности результата измерения.
Исследование эффекта «деформационной памяти» древесины для второй предыстории деформирования были проведены для двух диапазонов температур: 60-40-18С и 40-30-16С.
Результаты одного из экспериментов при для диапазонов температур 40-30-16 С на образце из древесины березы для такой предыстории деформирования представлены на рис. 4.15. Здесь даны изменения деформаций є, напряжений т и температуры / во времени г. Процедура испытаний была такой же, как и при описании модели (рис. 2.12), цифровые обозначения использованы те же. Участок 0-2 отражает растяжение при 40С до напряжений а =1,57 МПа, общая деформация равняется 0,00623. Далее , на участке 2-2 происходит охлаждение под нагрузкой до 30 С, общие деформации не изменяются. После разгрузки образца при 30С (участок 2-3) наблюдаемая деформация уменьшилась на величину упруго-эластической деформации (є„=0,00297). Сет-деформация растяжения (удлинение) я/" составила 0,00324.
На участке 3-5 при температуре 30 С к образцу была приложена сжимающая нагрузка, нагружение осуществлялось до той величины напряжений. При охлаждении (5-5) до 16,5 С общая деформация образца увеличилась, поскольку охлаждение проводилось медленно, и составила 0,00515. Оставшаяся после разгрузки (5-6) сет-деформация сжатия є по величине довольно близка к сет-деформации, образованной при растяжении, и равняется 0,00323.
При нагревании кривая восстановления, как и было предсказано выше, имеет сложный вид. На участке 6-7 при нагревании от 16 С до 30 С наблюдаемая деформация увеличивается из-за размораживания термозамороженной деформации сжатия ef, а на участке 7-8 при увеличении температуры до 40 С наблюдаемая деформация уменьшается при исчезновении термозамороженной деформации растяжения є fcm.
На рис. 4.16 представлены результаты опыта для диапазонов температур 60-40-19С , здесь отражена зависимость деформации є от температуры t. Процедура испытаний и обозначения соответствуют описанным выше (см. рис. 4.15). На участке 6-7 при нагревании от 18С до 40С наблюдаемый размер увеличивался, а на участке 7-8 при нагревании от 40С до 60С -уменьшался. Наблюдаемая после размораживания суммарная остаточная деформация (участок 0-8) для случая, показанного на рис. 4.15 (диапазоны температур 40-30-16С), меньше, чем в опыте для диапазонов температур 60-40-18С.
В экспериментах, проводимых в диапазонах температур 60-40-20 С, получены следующие значения долей компонентов термомеханической деформации: =21,15 %, Г=46,4 % "=32,65 %, =19,8 %, =39,8 %, =42,15 %. Предварительно проведенные опыты по выявлению доли остаточных и замороженных деформаций при изгибе (см. 4.1) позволили проанализировать полученные результаты. Доли замороженных деформаций растяжения и сжатия, остаточной деформации растяжения совпадают со значениями полученными при изгибе (см. рис. 4.8), доля остаточной деформации сжатия выше, поскольку охлаждение под нагрузкой от 40 С до комнатной температуры проводилось в течение 16-18 ч. Для диапазонов температур 40-30-16,5 С соотношения несколько отличаются СЯ=11,5 %, "=48 0/о Ераш= 40j5 o/0f є =14 о/0 =37,4 %, =48,6 %.
Средние значения долей замороженной деформации довольно хорошо укладываются на экспериментальную зависимость / =/(АГ), представленную на рис. 4.8. На рис. 4. 17 показана зависимость с учетом новых экспериментальных значений.