Введение к работе
Объектом исследования являются цифровые магнитные регистраторы
(ЦМР) и регистраторы каротажных диаграмм (РКД) автоматических каротаж
ных станций (АКС), устройства автоматизированного поиска зон записи на
ленточном носителе информации (УАПЗЗ), механизмы транспортирования лен
ты (МТЛ), устройство для вибродиагностики деталей и способ неразрушающе-
го контроля и технической диагностики ресурса узлов МТЛ в условиях воздей
ствия динамических нагрузок, устройство для магаитошумовой структуроско-
пии ферромагнитных изделий и технические средства виброакустической диаг
ностики материалов, основанные на измерении временных характеристик сни
маемого с датчика сигнала. :..„
Предметом исследования являются влияние нестабильности скорости развертки на динамическую точность записи - воспроизведения (3-й), изучение колебаний угла между координатами 3-В и суммарной погрешности от воздействия нескольких дестабилизирующих параметров, анализ спектрального состава сигнала, полученного при считывании электростатической головкой эквипотенциальной прямой полосы при наличии поперечных и перпендикулярных колебаний ленты, определение закона распредления перпендикулярных колебаний ленточного носителя, оценка влияния перпендикулярных колебаний носителя на размеры зарядного пятна при электростатической записи, модель канала магнитной 3-В сигналов, изучение влияния контактных, слойных и щелевых потерь на точность работы УАПЗЗ.
Актуальность темы. АКС, предназначенные для разведки нефтяных месторождений, производят геофизические исследования скважин (ГИС). Основной частью каротажной станции явлгается ^интегрированная информационно-измерительная система (ИИС)*которж'ЯРгаествляет преобразование,низкочастотных аналоговых сигналов в вдфротвЖгащз'апись его на машинные носители информации, цифровую фкльтрШИі||^іспознавание и редактирование полученных данных, считывание и вывод цифровых сигналов для регистрации их на графопостроителях в виде каротажных диаграмм, а также с помощью различных программных комплексов верификацию и интерпретацию каротажных данных.
Решение проблемы автоматизации ГИС требует создания и совершенст-рования парка приборов, включающих аппаратуру цифровой записи параметрі каротажа (АЦЗПК). Для достижения этого необходимы разработка и внешние научно-обоснованных технических решений, направленных на повыше-І-.Ч точности получаемой в процессе ГИС информации, ее информативности и , 'оверности, надежное документирование и наглядное представление выяв->ых геологических структур. Поэтому, по-прежнему, стоит задача обеспе-ІІИС для ГИС конкурентоспособными техническими средствами для запи-этажных данных и регистрации геофизических кривых. Точность регистрации информации зависит, в основном, от линейности „ртки регистрируемого сигнала и точности транспортирования ленточного носителя. Соответствие отклонений выходного и входного сигналов достигает-
ся при использовании элементов цифровой вычислительной техники. Точность механической развертки носителя определяется нестабильностью скорости вращения ведущих узлов МТЛ, поперечными колебаниями, перекосом ленты и т.п., чаще всего имеющими случайный характер. При считывании информации и ее представлении в числовую последовательность вследствие пространственных относительных колебаний носителя и считывающей головки также имеют место искажения подобного рода.
Анализ погрешностей, возникающих при регистрации и считывании, определяется случайным характером факторов, влияющих на точность всего процесса обработки информации и является сложной математической задачей, решение которой возможно с помощью современного математического аппарата.
Достижение надежности качественной регистрации невозможно без технического диагностирования состояния поверхности трения и скольжения тон-вала, валов, колес зубчатых передач, рабочей поверхности головки магнитной записи. При работе этих деталей возникают наклепы, микротрещины и другие дефекты, а также вибрации.
Разработка же средств технического диагностирования деталей и узлов связана с решением таких задач, как выбор наиболее информативных датчиков и поиск обладающих наибольшей помехоустойчивостью и легко реализуемых алгоритмов обработки сигналов. Первая задача решается путем анализа известных физических эффектов, с помощью которых можно осуществить прогнозирование.
Вторая задача заключается в разработке алгоритмов обработки сигналов и реализации их в конкретных устройствах. Имеющиеся алгоритмы обработки магнитного шума не обладают достаточной избирательностью. Например, наиболее часто используется лишь средняя за период мощность сигнала с датчика.
Требуется разработка алгоритмов, в которых в качестве информативных параметров сигнала вместо ранее измеряемых амплитудных используются временные характеристики сигналов: длительность фронтов нарастания и спада функции выходного сигнала, что значительно повышает помехоустойчивость алгоритмов преобразования сигнала с сохранением его информативности.
Это позволяет диагностировать детали, изготовленные из холоднокатаных материалов в целях выявления внутренней напряженности металла, наличия дислокаций, уровня остаточных напряжений, которые приводят к преждевременному старению материала деталей и деформированию.
Цель работы - разработка и научное обоснование оценок динамической точности процессов записи - воспроизведения информации регистрирующими устройствами, математическое моделирование амплитудно-частотных характеристик тракта записи воспроизведения при модулировании щелевых, контактных и слойных потерь, а также создание оригинальных устройств отображения геолого-геофизической информации и приборов для их технического диагностирования, внедрение которых внесет значительный вклад в повышение точностных характеристик функционирования автоматических каротажных станций.
Для этого необходимо произвести следующие исследования:
изучение влияния нестабильности скорости и колебаний угла между координатами развертки на динамическую точность записи - воспроизведения; определение суммарной статистической погрешности при записи -воспроизведении;
анализ спектрального состава сигнала, полученного при считывании электростатическим регистратором контрольной сигналограммы при наличии поперечных и перпендикулярных колебаний ленточного носителя; оценка влияния перпендикулярных колебаний при записи и воспроизведении электро-статографами на исходную информацию;
определение закона распределения поперечных колебаний диэлектрического носителя и оценка влияніяя перпендикулярных колебаний носителя на размеры зарядного пятна при электростатической записи;
математическое моделирование последовательности зон записи и зон без записи на магнитной ленте; изучение влияния колебаний скорости носителя на длительность участков без записи;
получение математического выражения для остаточного магнитного потока на ленте; получение математических зависимостей для наводимых ЭДС при флуктуациях щелевых, слойных и контактных потерь, вызванных динамическими возмущениями в тракте МТЛ;
внедрение аппаратуры цифровой записи параметров каротажа и графической информации; применение оригинальных устройств технического диагностирования узлов регистраторов; разработка и создание средств неразру-щающего контроля деталей МТЛ.
Методы исследования. Разработка МТЛ осуществлялась на основе теории машин и механизмов, теории колебаний и динамики, прочности машин, приборов и аппаратуры. Для оценки динамической точности функционирования прецизионных МТЛ применялись методы теории вероятностей, математической статистики и теории случайных функций.
Создание электростатических регистраторов и применение электростатической головки как датчика измерения погрешностей движения ленточного носителя базировались на записи и считывании контрольных сигналограмм методами скрытой потенциальной рельефографии и теории электростатики и электродинамики.
При проектировании ЦМР и оценке потерь 3-В сигналов использовались теоретические основы радиоэлектроники, теория точной магнитной записи и теоретические основы вычислительной техники.
Контроль поверхности и внутреннего напряженно-деформированного состояния деталей МТЛ осуществлялся методами технической диагностики и не-разрушающего контроля.
Достоверность и обоснованность полученных в работе результатов и выводов подтверждена результатами технической диагностики АЦЗПК и регистраторов каротажных диаграмм и опытом практической эксплуатации ИИС дляГИС.
Математические модели и алгоритмы, предложенные в работе, основаны на фундаментальных положениях функционального анализа, теории вероятностей и случайных функций, а также теории статистической радиотехники, параметрической модуляции сигналов и применении специальных функций.
Достоверность экспериментальных результатов обеспечена использованием аттестованных средств измерений динамической точности 3-В информации, большим объемом экспериментального материала, статистическими мето-" дами обработки данных и хорошей воспроизводимостью результатов.
На зашиту выносятся результаты исследования ЦМР и РКД, обеспе-ваюпшх высокую точность записи каротажных сигналов на магнитную ленту, повышение информативности и достоверности отображаемой информации, а также надёжное документирование и наглядное представление результатов ТИС, в том числе:
структурные электрические схемы оригинальных устройств цифровой магнитной записи и регистраторов графической и буквенно-цифровой информации, а также средств вывода информации из микропроцессорных вычислительных средств (МПВС);
теоретические исследования влияния нестабильности скорости развертки, колебаний угла между координатами 3-В и шгаскопараллельных перемещений ленточного носителя на динамическую точность 3-В, анализ спектрального состава тестового сигнала в виде эквипотенциальной прямой полосы, полученного при считывании его электростатической головкой при наличии поперечных и перпендикулярных колебаний ленты, получение оценки влияния перпендикулярных колебаний при 3 и В электростатографами на исходную информацию;
изучение влияния контактных, слойных и щелевых потерь на точность магнитной 3-В каротажных сигналов на примере работы УАПЗЗ; выбор формы модулированного гармонического сигнала, имитирующего последовательность зон записи, разделенных участками без записи, с целью изучения динамической точности работы УАПЗЗ; определение зависимости влияния колебаний скорости транспортируемого носителя на длительность участков без записи в режиме поиска зон записи;
разработка устройства для распознавания образов дефектов по спектральным характеристикам МТЛ и способа преобразования сигналов датчиков, установленных на узлах МТЛ для контроля их технического состояния и диагностики ресурса в условиях воздействия динамических нагрузок; создание устройства для магнитошумовой структуроскопии ферромагнитных изделий после их термической или холоднокатанной обработки, а также способа и устройств определения времени нарастания и спада фронтов импульсных сигналов для выявления внутренней напряженности металла, наличия дислокаций, уровня остаточных напряжений в деталях МТЛ.
Научная новизна полученных результатов определяется впервые проведенными комплексными исследованиями, направленными на получение научно-обоснованных технических решений, способствующих созданию ЦМР и
РКД ИИС для ГИС, позволяющих повысить точность и надежность цифровой записи геофизических сигналов и графического построения их диаграмм, в том числе расширить функциональные возможности при визуализации и документировании полезной, служебной и сопроводительной каротажной информации, в ходе которых:
разработаны оригинальные технические средства для многоканальной цифровой магнитной записи параметров каротажа, регистрации аналоговой, цифровой, и алфавитно-цифровой геофизической информации на основе электрохимического и электростатического принципов записи, а также устройство вывода цифровой информации из МПВС;
получены аналитические выражения для: одномерной плотности вероятности случайной функции искажения частоты считывания гармонического сигнала при нестабильных скоростях развертки ленточного носителя при регистрации и считывании; зависимости плотности распределения амплитуды зарегистрированного и считанного сигналов при обработке информации на устройствах с неперпендикулярнымй координатами развертки, когда функция распределения угла между координатами равновероятна в соответствующих интервалах; зависимости плотности вероятности амплитуды зарегистрированного и считанного сигнала при различных дисперсиях нормально распределенной функции изменения угла между координатами развертки; зависимости амплитуды гармоник и коэффициента искажения от угла между координатами развертки; функции искажения амплитуды считанного сигнала и величины зарядного пятна при перпендикулярных колебаниях носителя;
разработаны способ и УАПЗЗ на магнитном носителе, позволяющие автоматизировать процесс управления приводом МТЛ; предложена форма модулированного гармонического сигнала, имитирующего последовательность зон записи, разделенных участками без записи, получены теоретические выражения для оценки влияния контактных, слойных и щелевых потерь на точность работы УАПЗЗ соответственно в режимах записи и воспроизведения; установлена наибольшая степень влияния контактных потерь и щелевых потерь при непараллельных рабочих зазорах магнитных головок и непараллельности рабочих поверхностей головки и носителя; определена зависимость влияния колебаний скорости транспортируемого носителя на длительность участков без записи в режиме поиска зон записи;
предложены оригинальные устройства для технического диагностирования деталей и узлов МТЛ по спектральным характеристикам, получаемым по трем координатам и способ преобразования виброакустичских сигналов МТЛ для контроля его технического состояния и определения ресурса в условиях воздействия динамических нагрузок, имеющих характер случайных стационарных процессов; созданы, защищенные изобретениями, устройство для магни-тошумовой структуроскогши ферромагнитных изделий, способ и устройства определения времени нарастания и спада фронтов импульсных сигналов, которые применены как средства неразрушающего контроля для выявления внут-
V » м. 8
ренней напряженности металла, наличия дислокаций, уровня остаточных напряжений в деталях МТЛ.
Практическая ценность. Созданные ЦМР и РКД, вошедшие в состав ИИС для ГИС, позволили решить проблему автоматизации ГИС за счет обеспечения цифровой записи параметров каротажа, позволяющей вести их обработку с помощью МПВС, и обеспечить информативность, надежность и наглядность документирования каротажных диаграмм.
Техническая новизна разработанных способа и устройств защищены авторскими свидетельствами СССР на 4 изобретения.
Результаты диссертации были использованы при создании, отработке и промышленной эксплуатации ИИС для ГИС, входящей в состав АКС. Работа выполнялась в соответствии с планами госбюджетных и хоздоговорных НИР, проводимых в ИжГТУ и Удмуртском производственном геологическом объединении (УПГО): № ГР 01335004401 «Опытно-методические работы по обеспечению эффективности применения цифровой записи параметров каротажа на серийных каротажных станциях АКСЛ-7»; № ГР 32-86-19/ 43 « Совершенствование методов и средств записи, документирования, передачи и обработки каротажных данных с помощью ЭВМ»; №ГР 01870085493 «Анализ и выбор структуры математического обеспечения и элементной базы системы сбора и обработки гидрофизической информации»
Реализация работы в производственных условиях. Полученные в работе результаты использованы при проведении ГИС в ОАО «Удмуртгеология». При непосредственном участии автора разработаны и внедрены ЦМР для цифровой записи параметров каротажа и устройство вывода их из МПВС, РКД, осуществляющие документирование каротажных кривых.
Результаты работы могут быть использованы в практике работы предприятий, занимающихся ГИС и оценкой запасов нефти, а также геофизическими исследованиями территорий.
Общий экономический эффект от внедрения диссертационной работы и вклада ее автора в создание автоматизированной ИИС АКС, рассчитанных в ценах 1984 года, составляет 130 тыс. рублей.
Апробации работы. Отдельные законченные этапы работы докладывались и обсуждались на П Республиканской научной конференции молодых ученых, посвященной 60-летию автономии УАССР «Молодые ученые Удмуртии -народному хозяйству» (Ижевск, 1981), Ш Республиканской научной конференции молодых ученых «Молодые ученые Удмуртии -народному хозяйству», (Устинов, 1984); Всероссийской научно-технической конференции «Актуальные вопросы радиоэлектроники и автоматики» (Свердловск, 1984), Республиканской научно-практической конференции "Молодежь Удмуртии - ускорению научно-технического прогресса" (Устинов, 1985); Зональной конференции «Методы прогнозирования надежности проектируемых РЭА и ЭВА» Всесоюзной научно-технической конференции "Конструктивно-технологическое обеспечение качества микро- и радиоэлектронной аппаратуры при проектировании и в производстве" (Ижевск, 1988); 32 Научно-технической конференции Иж-
ГТУ (Ижевск, 2000).
За разработку, создание и внедрение комплекса аппаратуры для автоматизации сбора и обработки информации автор удостоен звания «Лауреат премии НТО Удмуртии» (1988), звания «Лауреат премии комсомола Удмуртии» (1987).
Публикации. Результаты работы отражены в 21 научных публикациях: 8 статей в центральной печати, 7 тезисов научно-технических конференций, 3 авторских свидетельства СССР, 3 научно-технических отчета по хоздоговорным НИР.
Структура и объем работы. Диссертация содержит введение, 5 глав и заключение, изложенные на 199 с. машинописного текста. В работу включены 51 рис., 1 табл., список литературы из 153 наименований и приложения (Акты об использовании результатов работы).