Введение к работе
Актуальность. Важная роль в решении задач соответствия продукции отечественных предприятий всех форм собственности мировому уровню принадлежит машиностроению. Значительное место в машиностроительном производстве имеет механическая обработка резанием, в том числе чистовые ее методы, например шлифование, хонингование и доводка. Эти методы обеспечивают наивысшую точность и качество изготовления деталей, что и определяет эксплуатационные качества агрегатов, приборов и машин. Общая тенденция развития механической обработки в связи с возрастанием требований к точности и качеству поверхности деталей свидетельствует о том, что удельный вес перечисленных финишных методов будет возрастать. Применение нержавеющих и жаропрочных сталей и сплавов на основе титана, антимагнитных сплавов, обладающих повышенной пластичностью и прочностью, низкой теплопроводностью, высокой адгезионной способностью, значительно усложняет финишную механическую обработку деталей машин, точных механизмов и приборов. При шлифовании этих материалов наблюдается засаливание абразивного инструмента, что требует частых правок его и является причиной повышенного износа. Это в свою очередь, снижает точность обработки деталей. Засаливание, в сочетании с плохой теплопроводностью, низкой теплоемкостью абразивных инструментов повышают температуру в зоне резания и вызывает появление прижогов на обрабатываемой поверхности. В связи с этим, во многих случаях приходится снижать производительность шлифования в 1,5-2 раза относительно возможностей, заложенных в станках и инструментах, что отмечается в работах отечественных и зарубежных авторов (Маслов Е.Н., Кривоухов В.А., Петруха П.Г., Редько С.Г., Королев А.В., Murray M.I., Mutton P.I. и др.).
Существенным недостатком абразивной обработки, особенно – шлифования, является шаржирование в обработанную поверхность абразивных зерен. Это снижает эксплуатационные качества изделий. Применение комбинированных процессов абразивной обработки в сочетании с дополнительными электрофизическими воздействиями не устраняет этот недостаток, поскольку сопряжено с повышенным износом инструмента. Результаты исследований, проведенных в России и за рубежом (Марков А.И., Нерубай М.С., Вероман В.Ю., Волосатов В.А., Киселев Е.С., Штриков Б.Л., Бржозовский Б.М., Бекренев Н.В., Кумабэ Дз., Нишимура и др.), показали, что применение ультразвукового поля в виде колебаний при механической обработке материалов приводит к снижению действующих усилий, к уменьшению сопротивления металла деформированию, что в свою очередь позволяет интенсифицировать технологический процесс обработки, улучшить качество и точность получаемых изделий. Однако, несмотря на эффективность использования существующих методов механической обработки материалов в ультразвуковом поле, расширение области их применения, ограничивается отсутствием комплексных исследований влияния ультразвука на процесс финишной обработки вязких материалов и изыскания путей восстанавления рабочей поверхности инструмента в процессе резания. Поэтому задача изучения процессов возобновляемого формообразования рабочей поверхности шлифовального инструмента в процессе резания и закономерностей обработки материалов таким инструментом с разработкой соответствующих технологических рекомендаций, представляется актуальной.
Цель исследований: Повышение эффективности и качества процесса финишной обработки с воздействием ультразвука поверхности деталей машино – и приборостроения из жаропрочных и нержавеющих сталей и сплавов путем применения дискового металлического инструмента с рабочей поверхностью, формируемой и возобновляемой в процессе обработки электроискровым нанесением микронеровностей.
Методы и средства исследований.
Теоретические исследования выполнялись с использованием положений науки о резании материалов, микрорезания металлическим инструментом, физики ультразвуковых и электроэрозионных процессов. Экспериментальные исследования проводились с применением методов математического планирования и статистической обработки результатов. В экспериментах использовались материалы с повышенной вязкостью и прочностью: титан, нержавеющие стали, медные сплавы, латунь и электротехнические стали. Использовалось существующее технологическое оборудование и измерительная аппаратура, а также разработанные автором установки. Моделирование процесса микрорезания проводилось на ультразвуковых станках 4Д772Э и ЛЭ-400, обработка металлическим кругом – на плоскошлифовальном станке 3Г71 и круглошлифовальном станке 3У10А. Силовые параметры процессов обработки определялись на тензометрическом динамометре УДМ-100, микрорельеф поверхности инструмента и образцов изучали при помощи компьютерного анализатора изображений микроструктур АГПМ-6М, микротвердость поверхности – на цифровом микротвердомере HVS-1000.
Научная новизна.
Теоретически и экспериментально обоснована финишная обработка труднообрабатываемых материалов металлическим дисковым инструментом, совершающим ультразвуковые колебания, с микронеровностями, наносимыми электроискровым методом и возобновляемыми в процессе обработки, обеспечивающая при сопоставимой шероховатости обработанной поверхности снижение сил резания по сравнению со шлифованием на 30-50%, повышение производительности в 3 раза, а также снижение пятна износа обработанной поверхности в 2-2,5 раза и исключающая засаливание рабочей поверхности на основе:
-
закономерностей микрорезания на малых и больших скоростях вязких труднообрабатываемых материалов с воздействием ультразвука единичными микронеровностями, сформированными электроискровым нанесением, позволяющих определить рациональную схему финишной обработки;
-
математической модели процесса финишной обработки инструментом с возобновляемой рабочей поверхностью, связывающей параметры микрорельефа обработанной поверхности с параметрами микронеровностей и с электрическими режимами их формирования и технологическими режимами обработки, позволяющей выбирать режимы нанесения и обработки по заданным характеристикам шероховатости поверхности детали;
3. модели формирования на поверхности инструмента покрытия в виде отдельных неровностей с радиусом округления вершин, достаточным для осуществления процесса микрорезания и экспериментальных зависимостей, показывающих взаимосвязь их высоты и разновысотности с размерами исходных частиц и технологическими режимами нанесения, что позволило разработать рациональный технологический процесс нанесения и схемы управления режущей способностью инструмента.
Практическая ценность работы заключается в следующем.
1. Разработаны:
- технологические рекомендации по ультразвуковой финишной обработке деталей из жаропрочных и нержавеющих сталей и сплавов инструментом с микронеровностями, сформированными электроискровым способом;
- инструмент с микронеровностями для ультразвуковой финишной обработки и методика его расчета;
- конструкции устройств для осуществления способа финишной обработки инструментом с металлическими микронеровностями;
- технологические рекомендации по электроискровому нанесению микронеровностей на инструмент в процессе обработки деталей;
- методика расчета и схема генератора, обеспечивающего нанесение определенной концентрации микронеровностей требуемой величины и радиуса округления на поверхность инструмента.
2. Результаты исследований по данной диссертационной работе в виде технологий и оборудования внедрены и используются в производственных условиях на предприятиях: ОАО «Нефтемаш-САПКОН» (г. Саратов), ОАО «НИТИ-Тесар» (г. Саратов), ОАО «КБ Электроприбор» (г. Саратов). Результаты используются также в учебном процессе на кафедре «Физическое материаловедение и технология материалов» СГТУ при дипломном проектировании студентов специальности 150600.65.
На защиту выносятся следующие основные положения и результаты исследований.
-
Способ финишной обработки труднообрабатываемых материалов металлическим дисковым инструментом, совершающим ультразвуковые колебания, с микронеровностями, наносимыми электроискровым методом, обеспечивающий сходные со шлифованием шероховатость и точность обработанной поверхности при повышении ее износостойкости и исключении засаливания инструмента.
-
Модель формирования микронеровностей с заданным радиусом округления вершины, обеспечивающая осуществление процесса микрорезания с необходимой производительностью и качеством. Модель образования шероховатости поверхности, обработанной инструментом с микронеровностями, позволяющая определять рациональные режимы нанесения микронеровностей и обработки.
-
Результаты экспериментальных исследований, в ходе которых получены зависимости размеров микронеровностей от электрических и кинематических факторов процесса, а также размеров исходных частиц, зависимости производительности обработки и износостойкости обработанной поверхности, шероховатости и температуры в зоне резания от режимов обработки, ультразвукового воздействия и параметров сформированного на инструменте микрорельефа.
-
Технологические схемы и процессы финишной обработки инструментом с микронеровностями и электроискрового формирования рабочей поверхности металлического дискового инструмента.
-
Схемы и устройства модернизации шлифовального оборудования для осуществления предлагаемого способа обработки и специальное технологическое оборудование.
Апробация. Материалы диссертации представлялись автором в виде докладов на 2-х международных («Фундаментальные исследования» Израиль, 2011г.; «Шлифабразив-2011», Волгоград, 2011 г.), 1 всероссийской (Рыбинск, 2009 г.) и 1 местной (Волжский, 2010 г.) конференциях и научно-методических семинарах кафедр «Конструирование и моделирование машиностроительных технологий и оборудования» и «Техническая механика и детали машин» в 2009-2011 г.г.
Публикации. По теме диссертации автором опубликовано 12 печатных работ, в том числе 5 в изданиях из перечня ВАК РФ и 5 патентов РФ.
Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, списка литературы в количестве 117 наименований и 3 приложений. Материалы изложены на 181 странице машинописного текста, включая 71 рисунок и 21 таблицу.