Введение к работе
Актуальность работы. В настоящее время происходят концептуальные изменения в системе генерации и распределения электрической энергии. В связи с возникновением серьезных проблем с энергообеспечением многих регионов, удорожанием топлива, трудностями его доставки в отдаленные и труднодоступные территории большее внимание уделяется развитию малых или распределенных систем электроснабжения на основе возобновляемых источников энергии.
Ветроэнергетика является бурно развивающейся отраслью энергетики. В 2012 году установленная мощность ветрогенераторов во всем мире превысила 250 ГВт. Россия обладает мощным ветроэнергетическим потенциалом, оцениваемым в 40 тысяч ГВтч электроэнергии в год. В настоящее время в России существуют проблемы с электроснабжением отдаленных, труднодоступных территорий, сельской местности, которые составляют около 70 % территории страны с населением около 22 миллионов человек.
На современном этапе развития ветроэнергетики существуют два самостоятельных направления. Первое - разработка, создание и внедрение ветроустановок большой мощности. Второе - создание и внедрение ветроустановок малой мощности локального применения. Каждое из этих направлений имеет свою наиболее эффективную сферу применения, свои сложности, позитивные и негативные моменты.
Использование энергии ветра в городской среде требует изменения подходов к конструированию, размещению и формированию новых требований к ветроустановкам городского типа. Одним из наиболее эффективных направлений является создание многомодульных ветроэлектрических установок, состоящих из нескольких модулей небольшой мощности с единой системой управления.
Основной проблемой при получении электроэнергии из ветра является нестабильность ветрового потока, которая приводит к изменению частоты вращения ветроколеса, ротора генератора и, как следствие, напряжения электрического генератора в широких пределах.
В этой связи необходимой и актуальной является разработка комплекса мероприятий по обеспечению максимальной эффективности преобразования ветрового потока в электрическую энергию при обеспечении заданного уровня частоты и величины генерируемого напряжения в условиях нестабильности ветрового потока.
История развития ветроэнергетики имеет значительную продолжительность. Большой вклад в разработку ветроустановок внесли отечественные учёные: В.Г. Залевский, Н.Е. Жуковский, Г.Х. Сабинин, В.П. Ветчинкин, Н.В. Фатеев, К.А. Ушаков и др. Вопросы разработки конструкции электрических генераторов на постоянных магнитах получили развитие в трудах отечественных ученых В.А. Балагурова, Ф.Ф. Галтеева, А.Н. Ледовского, Л.М. Паластина, И.П. Копылова и др.
Данная диссертационная работа выполнялась в соответствии с программой 06В «Энергоэффективные системы производства, преобразования, передачи и распределения электроэнергии», входящей в перечень основных научных направлений СГТУ имени Гагарина Ю.А.
Объектом исследования является электротехнический комплекс мультимодульной ветроэлектростанции (ВЭС) с регулируемым синхронным генератором на постоянных магнитах и выходным преобразователем частоты на основе инвертора тока.
Предметом исследования являются режимы работы и основные закономерности процессов генерирования и стабилизации выходного напряжения мультимодульной ветроэлектростанции в условиях нестабильности ветрового потока и изменяющейся нагрузки.
Целью диссертационной работы является совершенствование системы генерирования электрической энергии на основе мультимодульных ветроэлектростанций.
Для достижения поставленной цели в работе решались следующие научные и практические задачи:
-
Провести анализ существующих конструктивных схемных решений ветроэлектростанций, их электротехнических комплексов, способов стабилизации выходного напряжения по величине и частоте с целью определения возможных направлений улучшения технических параметров ветроустановок.
-
Предложить и обосновать новые варианты структурных схем модуля мультимодульной ветроэлектростанции на основе составного регулируемого ветрогенератора с системой стабилизации выходного напряжения и с экстремальной системой управления по максимуму генерируемой мощности.
-
Разработать математическую модель модуля мультимодульной ветроэлектростанции на основе регулируемого синхронного генератора на постоянных магнитах (СГПМ) с изменяемым положением ротора относительно обмоток статора, с блоками силовой преобразовательной техники и экстремальным блоком управления, отражающую электромагнитные и электромеханические процессы во всех блоках.
-
Определить факторы и степень их влияния на изменение технического состояния ветроэлектростанций через оценку остаточного ресурса электрооборудования.
-
Выполнить технико-экономический расчет мультимодульной ветроэлектростанции.
-
Разработать и изготовить физическую модель модуля мультимодульной ветроэлектростанции для сопоставления полученных теоретических и натурных результатов исследований.
Методы исследования включают аналитические методы, которые базируются на теории электрических машин, преобразователей частоты, магнитоэлектрических систем, современной теории работы ветроэнергетических установок, а также методы численного и имитационного моделирования электромеханических систем. Расчетные данные получены с применением комплекса программ для инженерного моделирования электромагнитных, тепловых и механических задач методом конечных элементов ELCUT и пакета прикладных программ MATLAB с пакетом расширения Simulink.
Научные положения и результаты, содержащиеся в работе и выносимые на защиту:
1 Электромеханический способ регулирования выходного напряжения синхронного генератора на постоянных магнитах, позволяющий регулировать выходное напряжение генератора в пределах (0,1 - 1)Uном, за счет изменения положения ротора относительно статора.
2 Совместное применение электромеханического и электронного способов регулирования и стабилизации выходного напряжения мультимодульной ветроэлектростанции, позволяющее повысить выработку электроэнергии на 18-25 % в условиях нестабильности ветрового потока и нагрузки, за счет обеспечения работы ВЭС в расширенном диапазоне ветровых нагрузок от 2,5 до 35 м/с и более.
3 Компьютерные математические модели модуля мультимодульной ветроэлектростанции с составным регулируемым генератором на постоянных магнитах с изменяемым положением ротора относительно обмоток статора, с системой поиска максимальной мощности, позволяющие получать параметры установившихся и динамических режимов работы, в условиях изменяющихся скорости ветра, величины и характера нагрузки.
4 Выявленное влияние внешних факторов (сезонный и суточный графики нагрузки, температура, влажность и химическое загрязнение окружающей среды, соотношение диаметра кабеля и диаметра трубы, в которой он проложен, Dтруб/dкаб) на увеличение/уменьшение остаточного ресурса электрооборудования ветроэлектростанции за счет изменения теплового режима работы оборудования, скорости протекания окислительно-восстановительных процессов в изоляции, а также конструктивных особенностей выполнения кабельной линии передачи сгенерированной электроэнергии в нагрузку.
Научная новизна работы.
1 Предложены и обоснованы варианты конфигурации структуры модуля мультимодульной ветроэлектростанции с регулируемым синхронным генератором на постоянных магнитах и системой экстремального регулирования.
2 Предложен комбинированный способ регулирования выходного напряжения ветроэлектростанции, позволяющий обеспечить работу мультимодульной ветроэлектростанции в расширенном диапазоне скоростей ветра от 2,5 до 35 м/с и более.
3 Разработана обобщенная математическая модель модуля мультимодульной ветроэлектростанции с электротехническим комплексом на базе регулируемого синхронного генератора на постоянных магнитах и с экстремальной системой поиска максимальной мощности, позволяющая исследовать динамические, переходные и аварийные режимы в условиях изменяющейся скорости ветра и нагрузки, а также определить зависимость длины ротора, находящегося под обмоткой статора, от скорости ветра.
4 Разработана методика оценки технического ресурса электрического оборудования мультимодульной ветроэлектростанции с учетом влияния внешних факторов и конструктивных особенностей выполнения кабельной линии передачи сгенерированной электроэнергии в нагрузку.
Практическая ценность и полезность работы.
-
Разработана новая конструкция ветрогенераторной части мультимодульной ветроэлектростанции на основе магнитоэлектрического синхронного генератора, для стабилизации выходного напряжения которого ротор перемещают относительно статора.
-
Предложены рекомендации по выбору рациональных геометрических параметров магнитной системы синхронного генератора на постоянных магнитах, позволяющие получить максимально возможный поток в воздушном зазоре.
-
Предложены три варианта имитационных математических моделей модуля мультимодульной ветроэлектростанции с разработанным синхронным магнитоэлектрическим генератором с изменяемым положением ротора относительно обмоток статора, позволяющие сократить время проектирования и разработки ветроэлектростанций.
-
Определены поправочные коэффициенты для определения коэффициента загрузки генератора в зимний и летний периоды, впервые определено влияние соотношения диаметра кабеля и диаметра трубы (Dтруб/dкаб), в которой он проложен, на увеличение или уменьшение остаточного ресурса за счет изменения теплового режима кабеля при прокладке в двустенных гофрированных полиэтиленовых трубах.
Реализация результатов работы.
Результаты диссертационной работы использованы при выполнении исследований, проводимых в СГТУ по г/б НИР СГТУ-341 «Разработка теоретических основ создания локальных систем электроснабжения на основе комплексного использования источников электроэнергии различной физической природы», по хоздоговорам № 234 «Заключение об использовании двустенных полиэтиленовых труб производства ЗАО «ДКС» для прокладки силового кабеля» и № 261 «Разработка схемных решений по подключению вентильного генератора от 100 до 500 кВт с безредукторным приводом от вала отбора мощности ГПА к системе электроснабжения ГПА, компрессорного цеха (компрессорной станции)», в учебном процессе кафедры «Электроснабжение промышленных предприятий» Саратовского государственного технического университета имени Гагарина Ю.А. при чтении курса лекций «Локальные системы электроснабжения».
Личный вклад автора заключается в предложении структурных схем модуля мультимодульной ВЭС и способа регулирования выходного напряжения СГПМ, в разработке имитационных математических моделей ветрогенератора и модуля мультимодульной ВЭС и проведении численных экспериментов, в предложении методики оценки технического ресурса мультимодульной ВЭС.
Апробация работы. Основные положения и результаты исследования доложены на Всероссийских научно-практических конференциях в г. Камышине в 2010, 2011 гг.; Всероссийских научно-практических конференциях молодых ученых СГТУ в 2010, 2011 гг.; II Международной научно-практической конференции СГАУ в 2011 г.; Международной научно-практической интернет-конференции в рамках Международного интернет-фестиваля молодых ученых СГТУ в 2011 г.; V Международной научно-практической конференции в г. Чите в 2011 г.; Всероссийском конкурсе научных работ студентов, магистрантов, аспирантов в г. Тольятти в 2011 г. Проект автора «Городская мультимодульная ветроэлектростанция» был представлен на 15-й специализированной выставке «Энергетика. Энергоэффективность. 2013» (23-26 апреля 2013 г., г. Саратов), а также на VIII Саратовском салоне изобретений, инноваций и инвестиций (19-20 сентября 2013 г., г. Саратов), проект был награжден серебряной медалью и дипломом II степени.
Публикации. По теме диссертации опубликованы 22 работы (4 статьи в журналах, рекомендованных ВАК РФ, 1 статья в иностранном издании, 16 статей в научных сборниках). Имеется патент на полезную модель «Мультимодульная ветроэлектростанция» № 128674 от 27.05.2013 г. Список публикаций по теме диссертации приведен в конце автореферата.
Объём и структура диссертации. Диссертационная работа состоит из введения, шести глав, заключения, списка использованной литературы. Объем работы составляет 173 страницы, в тексте 80 иллюстраций, 25 таблиц. Список литературы включает 112 наименований.