Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Андерсон Майкл Гордон

Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме
<
Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме
>

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Андерсон Майкл Гордон. Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме : диссертация ... кандидата физико-математических наук : 01.04.20.- Томск, 2006.- 137 с.: ил. РГБ ОД, 61 07-1/568

Содержание к диссертации

Introduction Rationale and justification of the research topic 5

Chapter 1 Review of relevant, existing experimental and theoretical data on pulsed high current PB/IB formation and propagation 10

1.1 Ion beam formation 10

1.2 Plasma beam formation 11

1.3 Plasma and ion beam propagation 12

1.4 Planned tasks of research 16

Chapter 2 Description of experiment, hardware and diagnostics 17

Chapter 3 Results and analysis of the formation and transport of pulsed

high current H+ PB across B-field in vacuum and magnetized

plasma 51

3.1 Plasma beam formation 51

3.2 PB propagation in vacuum without magnetic field 54

3.3 PB propagation in plasma without magnetic field 56

3.4 PB propagation in vacuum transverse magnetic field 57

3.5 Plasma beam propagation in magnetized plasma 58

3.6 Main results and analysis 59

3.7 Main tasks completed 61

Chapter 4 Results and analysis of the formation and transport of pulsed high current H IB across B-field in vacuum and magnetized plasma 62

4.1 Ion beam formation 62

4.1.1 Marx generator 63

4.1.2 Magnetically insulated diode 64

4.1.3 Anode 65

4.1.4 Cathode 65

4.1.5 Puff valve 66

4.1.6 AC gap magnetic field 61

4.1.7 Plasma ion source 69

4.1.8 Magnetic lens 70

4.1.9 Solenoid 71

4.1.10 Plasma guns 72

4.2 IB propagation in vacuum transverse magnetic field 72

4.3 Ion beam propagation in magnetized plasma 74

4.4 Main results and analysis 76

4.5 Main tasks completed 77

Chapter 5 Results and analysis of FRC formation and injection of pulsed high current РВЛВ into FRC 79

5.1 FRC formation with background plasma 79

5.2 FRC formation by PB injection into vacuum B-field 82

5.3 Injection of plasma beam into preformed FRC 83

5.4 Injection of ion beam into preformed FRC 85

5.5 Main results of PB/IB injection into an FRC 86

Conclusion Executive summary of main novel results of thesis 89 Acknowledgements 92

List of Publications 93

Cited References 96

Appendix 108

A1. Derivation of ExB conditions 108

A2. List of calculated plasma beam parameters 115

A3. List of calculated ion beam parameters 124

A4. Scaling study of IB propagation experiments 133

A5. Calculation of IB space-charge expansion in free space.. 1  

Введение к работе

Low energy, intense, us duration, neutralized ion beams (IBs) \E 105 to 106 eV, j 1 to a few 10s of A/cm2], and plasma beams (PBs) [E 100 eV, j 10 to 100 A/cm ] are promising candidates for various applications requiring charged particle propagation across magnetic field to stand-off targets and/or capture in magnetized plasmas such as: the field reversed configuration (FRC), tokamak, magnetic mirror, etc [1-6]. The most pertinent of these plasma confinement systems to this thesis is the field reversed configuration which has attracted a variety of research for its potential as an alternative approach for thermonuclear magnetic confinement fusion [7-14]. However, the generation and transport of high current ion and plasma beams still present nontrivial problems. Some of the well known difficulties encountered in this area of research are: initial beam divergence due to incomplete space charge neutralization, non-uniformity of the beam density during its formation, beam-plasma instabilities during transport and/or the problem of producing "long" pulse duration beams with high current densities due to plasma shorting of the anode-cathode (A-C) gap [15-18].

Pertinent to these problems, this thesis was focused on the production and transport of intense low energy pulsed plasma and ion beams across B-field in vacuum, magnetized plasma and their subsequent injection into a field reversed configuration.

An innovative approach using a combination of ballistic focusing magnetically insulated diode (MID) with a "concave" toroidal magnetic lens (TML) and a straight transport solenoid (TS) was implemented in order to substantially increase the density and propagation length of the IB across B-field.

As for the PB, a plasma accelerator based on a modified Marshal gun [19], was constructed and tested which utilized a tapered squirrel-cage electrode assembly and an auxiliary plasma source to increase beam duration and its current density.

The goal of the study

Study the formation and transport of high current PB and IB in vacuum and magnetized plasma across B-field pertinent to their future application for heating and confinement of stand-off plasma configurations. Fulfill experiments using injection of РВЯВ for enhancing FRC lifetime and B-field.

Scientific value and novelty of results

Collected new experimental data in a wider parameter range (E 100 eV, J 10 to 100 A/cm2) on PB propagation across B-field (0.1 - 1.5 kG) compared to previous experiments in vacuum and magnetized plasma, such as: decrease in density of PB s peripheral layers, strong PB braking with pronounced bunching of the central core with more than one order density increase ( 200 A/cm ). Demonstrated diamagnetic and collective modes of PB propagation in vacuum В-field and magnetized plasma.

Collected new experimental data for IB enhanced transport efficiency along the novel guide channel, and for beam propagation across B-field (0.1 - 1.5 kG) in vacuum and magnetized plasma in a wider parameter range (E 60 to 120 keV, J 1 to 25 A/cm ) compared to previous experiments. Demonstrated collective and single particle modes of IB propagation in vacuum and plasma respectively.

Fulfilled systematic experiments on the formation of FRC using axial injection of annular plasma flows in a coaxial solenoid reactor.

Designed, fulfilled and analyzed the first experiments on tangential injection ofPB and IB into an FRC.

Scientific and practical significance of the work

Tested new scheme for IB formation and transport which is valuable for many applied and fundamental studies related to the use of particle beams for the magnetic fusion, plasma laser pumping by IB, transport of IB to stand-off targets.

Verified existing data on PB and IB transport across B-field in vacuum and magnetized plasma and added new data for a wider range of experimental conditions.

The results of the first experiments on cross B-field injection of PB/TB into an FRC are valuable for a variety of studies related to the heating and sustaining of magnetically confined plasma systems which use the particle beams.

Presently, these results are being used, in the collaborative effort of the University of California Irvine and Tri Alpha Energy Inc., as a guide to determine the required beam parameters for effective heating and sustainment of a large FRC with pulsed high current particle beams.

Publications of results

There are 13 published works on the theme of this thesis in scientific journals and conferences (see List of Publications, P1-P13, at the end of the thesis), including 6 papers published in refereed scientific journals. The results of this thesis work were reported at: the 14th IEEE International Pulsed Power Conference, (Piscataway, NJ, USA, 2003); the 31st IEEE International

Conference on Plasma Science, (Piscataway, NJ, USA, 2004); the 13 International Symposium on High Current Electronics, (Tomsk, Russia, 2004);

the 15 International Conference on High Power Particle Beams, (St. Petersburg, Russia, 2004); the 6th Symposium on Current Trends in International Fusion

Research, (Washington D.C., USA, 2005); the 32nd IEEE International

Conference on Plasma Science, (Monterey, California, USA, 2005) and the 14 International Symposium on High Current Electronics, (Tomsk, Russia, 2006).

Structure and volume of dissertation

The thesis consists of an introduction, five chapters and a conclusion. The total volume of the dissertation is composed of 137 pages, 47 figures and 5 tables. The list of references includes 116 sources.

Digest of content

A brief review of relevant, existing, experimental and theoretical data on high current PB/IB formation and propagation is given in chapter 1. Chapter 2 is dedicated to the description of experiment, hardware and diagnostics. In Chapter 3, the results and analysis of the formation and propagation of the PB in vacuum transverse B-field and magnetized plasma are discussed. Chapter 4 is devoted to the results and analysis on the generation and transport of the IB in vacuum across B-field and magnetized plasma. In Chapter 5, results and analysis of FRC formation and PB/IB injection into the FRC are presented. Chapter 6 summarizes the main novel results followed by Acknowledgements, Publications, Cited References and Appendix. Claims submitted for defense

1. It was shown, for a wide range of beam parameters compared to previous experiments, that the propagation of pulsed high current plasma beams (PB) (E 100 eV, J 10 to 100 A/cm2) and ion beams (IB) (E 60 to 120 keV, J 1 to 25 A/cm2) across B-field (0.1 - 1.5 kG) in vacuum is controlled by the collective mechanism of ExB drift accompanied by a decrease in density of beam peripheral layers along В-field lines and, in the case of PB propagation, a pronounced bunching of the beam s central core ( 200 A/cm2).

2. It was suggested and proved that the new method of forming long-lived Field Reversed Configuration (FRC) via axial injection of annular plasma flows is critically sensitive to the value of the residual B-field ( 10 G) in the coaxial region during the FRC startup stage, which defines the pressure balance on the plasma configuration.

3. It was demonstrated that tangential injection of a pulsed high current PB into the preformed FRC results in beam trapping in the configuration and a respective enhancement of FRC lifetime (10%) and B-field amplitude (50%).

4. It was shown the possibility of trapping a pulsed high current IB, injected across B-field, in the preformed FRC. 

Похожие диссертации на Формирование и транспортировка сильноточных импульсных плазменных и ионных пучков в поперечном магнитном поле и замагниченной плазме