Введение к работе
Актуальность проблемы. Обеспечение конкурентоспособности на внутреннем и международном рынках продукции машино- и приборостроительных предприятий, выпускающих высокоточные детали и изделия для авиационной, автомобильной, судостроительной, электронной и другой техники, обусловлено качеством изготовления. Для обеспечения качества продукции и эффективности производства на предприятиях внедряются системы менеджмента качества продукции (МКП), одним из важнейших элементов которых являются системы мониторинга технологического процесса и оборудования (СМТП). Это обусловлено тем, что процессы механообработки лежат в основе изготовления указанных выше изделий, причем наиболее широко используются процессы резания на автоматизированных металлорежущих станках (МРС). Именно технологическая надежность станков определяет качество формообразования деталей, поэтому ее обеспечению уделялось особое внимание в исследованиях А.С.Проникова, В.А.Кудинова, А.В.Пуша, В.Н.Подураева, А.Г.Суслова, Б.М.Бржозовского и ряда других ученых. При этом использовались положения теории резания, технологии машиностроения, динамики станков, теории автоматического управления, трения и износа и ряда других смежных дисциплин. Современный уровень требований к качеству изделий определяет необходимость применения станков с ЧПУ нового поколения, широкого использования методов и средств автоматизированного контроля и технической диагностики, микропроцессорных средств информационно-измерительной техники, новых методов сбора, обработки и использования информации о функционировании станков и параметрах технологического процесса (ТП) для принятия решения об управлении в соответствии с задачей системы мониторинга.
Вопросы построения СМТП, в основном технологического оборудования, методы, средства и результаты исследований изложены в работах Б.М.Бржозовского, В.Л.Заковоротного, А.В.Пуша, И.К.Салениекса и ряда других ученых. Однако изложения требований к организации и построению СМТП при изготовлении высокоточных деталей и изделий, в частности, в подшипниковом производстве, в упомянутых работах не представлено. Создание эффективной СМТП предполагает решение целого комплекса взаимосвязанных задач, включающих организационное, научно-методическое, техническое, информационное и кадровое обеспечение с учетом особенностей конкретного производства. Системный подход к организации СМТП позволяет не только повысить качество изготовления деталей за счет управления процессом обработки и обслуживания МРС по реальному техническому состоянию, но и предупредить появление брака, т.е. снизить издержки производства.
Производство подшипников является одним из примеров, когда процессы обработки практически полностью определяют качество деталей, причем необходимо принимать во внимание как геометрические параметры точности поверхностей качения, так и физико-механические параметры их поверхностного слоя. Одним из процессов финишной обработки поверхностей качения деталей подшипников (колец и роликов) является шлифование на автоматизированных станках. Влияние ряда факторов, сопровождающих шлифование (теплофизических, динамических и других), приводит к снижению качества деталей и, соответственно, подшипников. Обеспечение качества формообразования деталей достигается путем управления процессом шлифования на основе контроля ряда параметров технологического процесса и оборудования (ТПО), в частности, параметров состояния станков, процесса обработки и деталей, а также накопления, обработки и анализа полученных данных для принятия управляющего решения, что и составляет собственно систему мониторинга. Следует отметить, что организация мониторинга процесса шлифования, направленного на обеспечение стабильности качества деталей подшипников, практически не рассматривалась, за исключением ряда работ сотрудников СГТУ, решавших отдельные аспекты проблемы.
Для построения системы многопараметрового контроля необходимо из всего комплекса факторов, влияющих на качество шлифования, выделить доминирующие. Одним из таких факторов является динамическое состояние станка, определяемое уровнем и частотным составом виброакустических (ВА) колебаний в узлах формообразующей подсистемы, которые служат обобщающими показателями его динамических характеристик, существенно влияющих на формирование некруглости, гранности и волнистости деталей и связанную с ними неоднородность физико-механи-ческих свойств поверхностей качения. В современных условиях производства снижение динамического качества станков за счет повышения уровня колебаний объясняется рядом причин эксплуатационного характера, в частности, недостаточным качеством наладки, технического обслуживания и ремонта. Снижение уровня вибраций достигается периодической подналадкой станка или корректировкой технологического режима. Для оперативной оценки динамического состояния станков при эксплуатации актуальна разработка методов автоматизированного контроля вибраций и обработки данных для принятия решения о подналадке станка или его ремонте. Автоматизированная оценка динамического состояния станков в условиях производства, паспортизация станков на ее основе и создание соответствующей базы данных в СМТП для обеспечения технологической надежности станков требуют дополнительных исследований.
Для контроля качества деталей вместе с измерением традиционных макро- и микрогеометрических параметров точности дорожек качения целесообразно использовать дополнительный информационный канал, в частности, на основе автоматизированной системы вихретокового контроля (АСВК) качества поверхностного слоя шлифованных деталей. При этом следует осуществить автоматизированное распознавание дефектов поверхностей качения (периодических и локальных) и их количественную оценку, а затем при сопоставлении оценок динамического состояния МРС с реальными параметрами качества деталей принять соответствующее решение об управлении процессом шлифования. Эффективность вихретокового контроля деталей подшипников и его интеграция в СМТП на практике рассматривались только в ограниченном числе работ, выполненных в СГТУ.
Особенностью процессов шлифования колец подшипников является применение активного контроля, обеспечивающего получение в первую очередь заданного размера. Возрастание требований к качеству обработки поверхностей качения обусловливает необходимость учета при управлении шлифованием не только величины снимаемого припуска, но и дополнительных параметров, в частности, скорости съема припуска и уровня вибраций при резании. Установленные критические значения этих параметров рассматриваются в качестве ограничений при обработке, что позволяет повысить стабильность геометрических параметров точности и практически исключить прижоги поверхностного слоя. Однако управление качеством колец при многопараметровом активном контроле и его интеграция в СМТП практически не рассматривались, за исключением нескольких работ сотрудников СГТУ, решавших частные задачи.
Из изложенного следует, что практическая потребность в обеспечении высокого качества формообразования деталей подшипников определяет актуальность проблемы создания методологии построения системы мониторинга ТПО, научных основ реализации информационно-измеритель-ных каналов и принятия решений по управлению качеством.
Цель работы - обеспечение качества формообразования деталей точного машиностроения на основе организации мониторинга технологического процесса и оборудования, базирующегося на многопараметровом автоматизированном контроле состояния деталей, станков и процесса обработки (на примере подшипникового производства).
Методы и средства исследования. Теоретические исследования выполнены на основе методов теории автоматического управления, динамики станков, автоматизированного контроля, распознавания образов, анализа случайных процессов с использованием компьютерного моделирования и вейвлет-преобразований сигналов. Экспериментальные исследования проведены в производственных условиях на автоматизированных шлифовальных станках для обработки колец подшипников, оснащенных приборами активного контроля, в том числе многопараметрового, с применением современных средств контроля качества деталей, включая автоматизированный вихретоковый прибор ПВК-К2М (зарегистрирован в Государственном реестре средств измерений № 26079-03), измерения ВА колебаний узлов станков с применением виброизмерителя ВШВ-003М2 с компьютерной обработкой результатов.
Научная новизна работы:
1. Для обеспечения качества формообразования деталей точного машиностроения на основании комплексных теоретических и экспериментальных исследований и внедрения их результатов решена актуальная научная проблема, связанная с созданием методологических основ организации системы мониторинга технологического процесса и оборудования как многоконтурной обратной связи в системе МКП, с интегрированным в нее автоматизированным многопараметровым контролем качества деталей, динамического состояния станков и процесса обработки.
2. Разработана методология построения СМТП (на примере подшипникового производства) из четырех взаимосвязанных подсистем (организационная, научно-методического, технического и информационного обеспечения), базовой из которых является подсистема технического обеспечения, включающая информационно-измерительные каналы вихретокового контроля качества поверхностного слоя шлифованных деталей подшипников, контроля динамического состояния станков и многопараметрового активного контроля процесса шлифования.
3. Обоснован метод обеспечения качества обработки поверхностей качения на основе оперативного контроля динамического состояния шлифовальных станков как до обработки, так и во время обработки, критериально устанавливаемого в соответствии со стохастическими моделями процессов в технологической системе по интегральным оценкам авто- и взаимным спектрам виброакустических колебаний шпиндельных узлов круга и детали и опоры кольца.
4. Обоснован метод оценки неоднородности структуры поверхностного слоя деталей подшипников на основе автоматизированного вихретокового контроля шлифованных поверхностей качения с выявлением периодических и локальных неоднородностей применением фурье- и вейвлет-преобразований сигналов и методов распознавания образов, и количественной оценкой качества поверхностей, базирующейся на сравнении информационных признаков вихретоковых образов эталонных и изготовленных деталей.
5. Обоснован метод минимизации макро- и микрогеометрических параметров точности и стабилизации качества поверхностей качения колец подшипников при шлифовальной обработке на основе многопараметрового активного контроля величины и скорости съема припуска и вибраций жесткой опоры кольца, позволяющего реализовать управление поперечной подачей круга.
Практическая ценность и реализация результатов работы.
Создано методическое и программное обеспечение для организации многопараметрового контроля в рамках СМТП при изготовлении деталей подшипников (колец и роликов).
Разработано методическое и программное обеспечение для автоматизированной оценки динамического состояния станков по стохастическим характеристикам ВА колебаний в диапазоне до 4 кГц , обеспечивающие паспортизацию станков по динамическому качеству. Экспериментально установлены эталонные значения динамических характеристик шлифовальных станков SIW-5 и SWaAGL-50, которые заносятся в базу данных СМТП. Выявлена связь динамических характеристик с качеством обработки дорожек качения колец подшипников, которое определяется с помощью автоматизированного вихретокового контроля.
Разработано методическое и программное обеспечение для выявления неоднородности структуры поверхностного слоя и автоматизированного распознавания локальных дефектов с использованием вейвлет-преобразований с помощью вихретокового прибора ПВК-К2М, интегрированного в СМТП.
Апробирован метод повышения стабильности геометрических параметров точности (овальности, гранности, волнистости) и однородности структуры поверхностного слоя дорожек качения колец подшипников с использованием микропроцессорного прибора многопараметрового активного контроля, интегрированного в систему мониторинга.
Разработанные методы и средства применены для решения задач корректировки маршрута обработки деталей подшипников при проектировании ТП, контроля изготовления протяженных конструктивов и процесса абразивной доводки деталей двигателя автомобиля.
Внедрение результатов работы осуществлено в ОАО "Саратовский подшипниковый завод" в рамках программы внедрения специальных технических средств для совершенствования системы управления качеством, действующей на предприятии, что позволило на 60-80% повысить стабильность параметров точности и в 4-5 раз сократить брак по качеству поверхностей качения колец, о чем свидетельствуют акты внедрения. Внедрение ряда методических разработок и программных продуктов осуществлено в ОАО "Саратовский электроприборостроительный завод им. С.Орд-жоникидзе" и ЗАО "НПК прецизионного оборудования", что также подтверждается актами внедрения.
Материалы исследований использованы при выполнении "Ползуновского гранта" (2006 г.), а также при выполнении работ в соответствии с тематическим планом СГТУ по заданию Федерального агентства по образованию: "Разработка теоретических основ мониторинга технологического процесса обработки прецизионных деталей на базе современных информационных технологий" (2007 г., № госрегистрации 01200703631) и "Теоретические основы мониторинга состояния оборудования для финишной обработки высокоточных деталей на базе информационного канала многопараметрового активного контроля" (2009 г., № госрегистрации 01200902701).
Апробация работы. Основные результаты диссертации докладывались на 23 конференциях различного уровня:
на международных конференциях: Надежность и качество (Пенза, 2001 г.), Динамика технологических систем (Ростов-на-Дону, 2001 г.; Саратов, 2004 г.; Ростов-на-Дону, 2007 г.), Проблемы и перспективы прецизионной механики и управления в машиностроении (Саратов, 2002 г.; 2006 г.), Современные технологии в машиностроении (Пенза, 2003 г.), Актуальные проблемы надежности технологических и транспортных машин (Пенза, 2003 г.), Процессы абразивной обработки, абразивные инструменты и материалы (Волжский, 2003 г.; 2004 г.; 2006 г.), Проблемы точной механики и управления (Саратов, 2004 г.), Теплофизические и технологические аспекты управления качеством в машиностроении (Тольятти, 2005 г.), Материалы и технологии 21-го века (Пенза, 2006 г.; 2009 г.), Автоматизация технологических процессов и производственный контроль (Тольятти, 2006 г.), Математические методы в технике и технологиях – ММТТ-21 (Саратов, 2008 г.), Прогрессивные технологии в современном машиностроении (Пенза, 2008 г.), Оптимизация процессов резания, разработка и эксплуатация мехатронных станочных систем (Уфа, 2009 г.);
на всероссийских конференциях: Студенты, аспиранты и молодые ученые – малому наукоемкому бизнесу (Ползуновские гранты, Барнаул, 2006 г.), Материаловедение и технология конструкционных материалов (Волжский, 2007 г.), Высокие технологии в машиностроении (Самара, 2008 г.), Совершенствование существующих и создание новых технологий в машиностроении и авиастроении (Ростов-на-Дону, 2009 г.).
Публикации. По теме диссертации опубликовано 74 работы, в том числе 15 статей в журналах, рекомендованных ВАК, 3 монографии.
Структура и объем диссертации. Диссертация состоит из введения, шести глав и заключения, включает 410 страниц текста, 154 рисунка, 11 таблиц и приложения, список литературы содержит 355 наименований.