Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Системы считывания для многоэлементных ИК ФПУ третьего поколения Ли, Ирлам Игнатьевич

Системы считывания для многоэлементных ИК ФПУ третьего поколения
<
Системы считывания для многоэлементных ИК ФПУ третьего поколения Системы считывания для многоэлементных ИК ФПУ третьего поколения Системы считывания для многоэлементных ИК ФПУ третьего поколения Системы считывания для многоэлементных ИК ФПУ третьего поколения Системы считывания для многоэлементных ИК ФПУ третьего поколения
>

Диссертация, - 480 руб., доставка 1-3 часа, с 10-19 (Московское время), кроме воскресенья

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Ли, Ирлам Игнатьевич. Системы считывания для многоэлементных ИК ФПУ третьего поколения : диссертация ... доктора технических наук : 05.27.01, 01.04.10 / Ли Ирлам Игнатьевич; [Место защиты: Новосиб. гос. техн. ун-т].- Новосибирск, 2009.- 295 с.: ил. РГБ ОД, 71 11-5/28

Введение к работе

Актуальность. Задачи по созданию фотоприемников, чувствительных к излучению в инфракрасном (ИК) диапазоне, с момента открытия Гершелем инфракрасного излучения в 1800 году решаются уже более двух столетий, и с тех пор объем исследований в этой области непрерывно возрастает. В 80-90 годы прошлого столетия были решены основные технологические и схемотехнические проблемы создания многоэлементных ИК фотоприемных устройств (ИК ФПУ) второго поколения, заключающиеся в реализации многоэлементных ИК фотоприемников с обнаружительной способностью, ограниченной флуктуациями фонового излучения (режим ОФ) и достижении пространственного и временного разрешения, сопоставимого с телевизионным стандартом [1]. Налажено производство линейчатых ИК ФПУ различных форматов до 1х1500, в том числе, с режимом временной задержки и накопления (ВЗН) форматов 288х4, 480х6, матричных ИК ФПУ вплоть до 2048х2048 элементов [1, 2]. Производство тепловизионных систем стало одним из самых динамичных секторов электронной промышленности. Прогресс в области многоэлементных ИК ФПУ позволил тепловизионным методикам, ранее применявшимся в основном в интересах оборонной техники, найти широкое применение в промышленности, медицине, научных исследованиях.

В настоящее время ведутся разработки ИК ФПУ следующего, третьего поколения. К числу приоритетных задач относится совершенствование мультиспектральных ИК ФПУ. Регистрация объектов одновременно в нескольких спектральных диапазонах позволит существенно повысить вероятность обнаружения и идентификации объектов. Значительные усилия направлены на освоение технологий выращивания на кремниевой пластине с изготовленными устройствами считывания эпитаксиальных слоев узкозонных полупроводниковых материалов, многослойных структур с квантовыми ямами GaAs/AlGaAs, InAs/GaInSb, что позволит избежать дорогостоящей операции гибридной сборки и повысить надежность ИК ФПУ.

Многие исследователи подчеркивают, что функциональные возможности, массогабаритные характеристики, энергопотребление и стоимость тепловизионных систем третьего поколения главным образом будут определяться кремниевыми системами считывания. Сложность задач, налагаемых на кремниевые устройства, во многом обусловлены низкой контрастностью изображения в ИК диапазоне. Так в спектральном диапазоне 8-14 мкм контрастность изображения при комнатной температуре фона составляет всего ~0.1% при разности температур сцены ~ 1 К. Неоднородность параметров многоэлементных ИК фотоприемников, передаточных характеристик многоканальных устройств считывания приводит к значительно большему, по сравнению с информационными компонентами разбросу сигналов. Повышаются, по сравнению с ФПУ видимого диапазона, требования к временной стабильности всех компонент ИК ФПУ. Поэтому необходима предварительная, предпроцессорная обработка фотосигналов (формирование ИК видеосигналов) и периодическая калибровка фотосигналов по эталонному источнику ИК излучения. Системы формирования ИК видеосигналов, калибровки, охлаждения фоточувствительного модуля ИК ФПУ до криогенных температур во многом определяют массогабаритные характеристики, потребляемую мощность и стоимость тепловизионных систем.

Выделим ряд нерешенных проблем многоэлементных ИК ФПУ.

1. Современные кремниевые устройства считывания обеспечивают не только считывание сигналов с многоэлементных ИК фотоприемников и их передачу на ограниченное количество внешних выходов, но и решают все более широкий круг задач. Уже сейчас становится стандартной структура устройств считывания с «командным» регистром, обеспечивающая возможность оперативно изменять режимы работы ИК ФПУ, такие как выбор произвольного окна - «оконный режим», изменение времени накопления, кадровой частоты. Для многоэлементных ИК ФПУ, также как и для любых развивающихся функциональных устройств, после достижения определенного уровня (второе поколение ИК ФПУ), основной задачей становится создание интегрированных функционально полных систем. Для ИК ФПУ понятие функционально полной системы включает формирование ИК видеосигналов и решение части задач по обработке сигналов, таких как распознавание образов и т. д. В тепловизионных системах третьего поколения эти задачи должны решаться кремниевыми устройствами (системами), интегрированными с устройствами считывания в фокальной плоскости ИК ФПУ. Разработка системных и схемотехнических решений обработки в режиме реального времени огромных массивов информации с многоэлементных ИК фотоприемников является самостоятельным научно – техническим направлением.

Попытки создать устройства начальной предпроцессорной обработки сигналов, интегрированных с устройствами считывания, начались практически одновременно с разработкой многоэлементных ИК ФПУ, однако решить эти проблемы не удалось и, до сих пор, формирование ИК видеосигналов и начальная обработка видеоизображений осуществляется во внешних устройствах вне фокальной плоскости ИК ФПУ.

2. В важнейшем для ИК ФПУ спектральном диапазоне 8-14 мкм преимущественно применяются устройства ввода с прямой инжекцией заряда (ПИ). Однако анализ этой системы до наших работ ограничивался качественными оценками, не позволяющих выявить основные факторы, лимитирующие параметры ИК ФПУ на их основе. Одной из немногих, нерешенных проблем матричных ИК ФПУ второго поколения является ограничения зарядовой емкости устройств считывания [4]. Зарядовая емкость существующих устройств считывания позволяет использовать всего несколько процентов от информационного сигнала и, поэтому, температурное разрешение тепловизионных систем (NETD) более чем на порядок величины хуже теоретического предела.

3. В 70-80 годах XX века интенсивно велись исследования МДП структур на узкозонных полупроводниковых материалах. Интерес к МДП структурам объяснялся стремлением разработать многоэлементные ИК ФПУ на приборах с зарядовой связью (ПЗС), приборах с инжекцией заряда (ПЗИ), аналогичные кремниевым многоэлементным ФПУ видимого диапазона [3]. Позднее, с освоением гибридной сборки на индиевых микростолбах, основные усилия были направлены на реализацию на основе ИК фотодиодов гибридных ИК ФПУ. В ИФП им. А.В. Ржанова СО РАН продолжались комплексные работы по исследованию InAs МДП структур и, на их основе удалось реализовать гибридные многоэлементные ИК ФПУ.

Еще в 80 годы проблемы связанные с разработкой кремниевых систем считывания оценены следующим образом: “Съем и параллельная обработка одновременно генерируемых фотодетекторами сигналов является главной трудностью реализации больших мозаик фотодатчиков” [5]. Эта оценка роли устройств считывания остается справедливой и в настоящее время [6] и подчеркивает актуальность решаемых в диссертационной работе задач.

Целью диссертационной работы является разработка структурных и схемотехнических решений построения устройств (систем) считывания, решающих ключевые проблемы развития многоэлементных ИК ФПУ третьего поколения.

Поставленная цель предусматривает решение следующих основных задач:

- разработка структурных и схемотехнических принципов построения многоканальных устройств (систем) интегрированных с устройствами считывания, позволяющих формировать ИК видеосигналы и обрабатывать видеоизображения в фокальной плоскости ФПУ;

- улучшение температурного разрешения тепловизионных систем в спектральном диапазоне 8-14 мкм. Для этого необходимо разработать математические модели и методики анализа основной для многоэлементных ИК ФПУ длинноволнового диапазона системы считывания: фотодиод - устройство считывания с прямой инжекцией заряда. Найти схемотехнические решения позволяющие увеличить зарядовую емкость устройств считывания не менее чем в 6-10 раз по сравнению с зарядовой емкостью существующих устройств считывания. Такие устройства считывания позволят полнее использовать падающую на фотоприемники в длинноволновом диапазоне оптическую информацию и в корень квадратный из отношения зарядовых емкостей улучшить NETD тепловизионных систем в спектральном диапазоне 8-14 мкм;

- разработка устройств считывания для многоэлементных гибридных ИК ФПУ на основе ПЗИ элементов, позволяющих создавать многоэлементные ИК ФПУ на основе InAs, InSb ПЗИ элементов. Реализация различных тепловизионных систем на основе ПЗИ элементов с предельной чувствительностью, близкой к режиму ограничения флуктуациями фонового излучения (на уровне лучших мировых аналогов).

Объекты и методы исследования. Основным объектом исследований являются кремниевые устройства считывания, многоэлементные ИК ФПУ. Математическое моделирование устройств считывания, многоэлементных ИК ФПУ, экспериментальные исследования фотоэлектрических параметров ИК ФПУ.

Научная новизна работы:

1. Разработана математическая модель системы ИК фотодиод – ПИ, в которой расчет величины шумового заряда Q(t), интегрируемого устройством считывания с помощью функции Макдональда проводится в терминах спектральной плотности Si() [7]. При этом решается самосогласованная задача для тока фотодиода и тока, интегрируемого в устройстве считывания. Модель позволяет проводить полномасштабное численное моделирование системы, формулировать оптимальные требования к конструктивным и электрофизическим параметрам устройств считывания, ИК фотодиодам, необходимые для достижения проектных характеристик.

2. Предложены структурные и схемотехнические решения построения устройств (систем), обеспечивающих формирование ИК видеосигналов и частично процессорную обработку сигналов в фокальной плоскости ИК ФПУ в аналоговой и цифровой форме:

- многоканальных устройств, обеспечивающих вычитание аддитивных неинформационных компонент сигналов, обусловленных неоднородностью фотоэлектрических параметров приемников, передаточных характеристик устройств считывания и повышение контрастности ИК изображения;

- адаптивных устройств предпроцессорной обработки сигналов, обеспечивающих не только вычитание аддитивных, неинформационных компонент сигналов, но и возможность устранения временного дрейфа этих параметров.

3. Предложены схемотехнические решения построения устройств считывания линейчатых и матричных типов для гибридных ИК ФПУ на основе ПЗИ элементов.

4. Развит метод для определения времени жизни неосновных носителей заряда из анализа временных зависимостей процесса состоящего из инжекции и обратного собирания носителей заряда в инверсионный слой МДП емкости.

Практическая значимость и реализация результатов. Работа выполнялась в соответствии с программой основных научных направлений ИФП СО РАН, пункт 9.1.2. «Исследования фотоэлектрических свойств гетероструктур на основе МЛЭ КРТ, квантово-размерных слоев на основе А3B5, легированных пленок PbSnTe и термоэлектрических свойств оксидов с целью разработки и создания многоэлементных ИК-фотоприемных устройств нового поколения». Основные результаты диссертационной работы получены за период с 1980 по 2008 годы при выполнении НИР, ОКР и изложены в более чем 20 научно-технических отчетах.

Системные и схемотехнические решения для устройств считывания, устройств предпроцессорной обработки фотосигналов, оптимизация топологии фотоприемных элементов и облика ИК ФПУ в целом позволили разработать, спроектировать и изготовить устройства считывания для многоэлементных ИК ФПУ различных форматов и реализовать ряд тепловизионных систем на их основе.

1. Устройство считывания с ПИ для двухмерных ИК ФПУ, отличительной особенностью которого является структура устройств считывания в виде фрагментов 2х2 элемента. Такая организация входных устройств обеспечивает зарядовую емкость ~ 2-5108 электронов, что в 6-10 раз больше зарядовой емкости существующих устройств считывания. На его основе создан экспериментальный образец ИК ФПУ формата 128х128

2. Впервые реализовано многоэлементное ИК ФПУ с интегрированными с устройствами считывания устройствами предпроцессорной обработки сигналов обеспечивающие вычитание аддитивных неинформационных компонент фотосигналов. ИК ФПУ с InSb МДП фотоприемниками имеет обнаружительную способность близкую к режиму ОФ и создан динамический ИК спектрометр со временем регистрации спектров ~ 100 мкс.

3. Разработано устройство считывания для пеленгации импульсных сигналов. Реализовано ИК ФПУ формата 8х8 элементов и макет лазерного пеленгатора для регистрации времени поступления и координаты отраженных от объекта ИК сигналов.

4. Разработаны схемотехнические решения и созданы опытные образцы адаптивных многовходовых устройств предпроцессорной обработки сигналов в аналоговой и цифровой форме в интегральном исполнении с устройствами считывания. Данные устройства кроме вычитания неинформационных компонент сигналов являются фильтром высоких частот позволяющим регулировать в широких пределах полосу пропускания индивидуально для каждого фотоприемного канала, что позволяет решить проблему временного дрейфа параметров всех компонент ИК ФПУ.

5. Созданы устройства считывания с накоплением фотосигналов в ПЗИ элементе линейчатого формата 2х192, матричных форматов 128х128, 256х256 позволившие:

- реализовать гибридные ИК ФПУ на основе InAs ПЗИ элементов форматов 128х128, 256х256 и линейчатых формата 2х192;

- наладить опытное производство тепловизионных и спектрометрических систем различного назначения – тепловизора ТКВр-ИФП “СВИТ”, ИК микроскопа, быстродействующего ИК спектрометра DIMS-384. Основные параметры этих приборов соответствуют или превышают мировой уровень.

В приложении приведены акты об использовании результатов работы, подтверждающие ее практическую значимость. Тепловизор ТКВр-ИФП “СВИТ” применяется в медицинских центрах, поликлиниках как в России, так и за рубежом. Такими системами на основе InAs ПЗИ элементов (тепловизоры, динамические ИК спектрометры, ИК микроскопы) оснащены многие научные учреждения, в том числе ИТ СО РАН, ИЯФ СО РАН, ИТПМ СО РАН, Московский Государственный университет, ИК СО РАН и более 25 других организаций.

На защиту выносятся:

1. Схемотехнические решения, проекты и образцы устройств предпроцессорной обработки сигналов интегрированные с устройствами считывания, приборы на их основе:

- устройство предпроцессорной обработки фотосигналов формата 1х64 обеспечивающее подавление аддитивный неинформационных компонент сигналов. Это устройство позволило впервые реализовать быстродействующий ИК спектрометр на основе InSb ПЗИ элементами с временем дискредитации 100 мкс;

- адаптивные устройства предпроцессорной обработки, обеспечивающие формирование ИК видеосигналов в условиях временного изменения (дрейфа) фотоэлектрических параметров фотоприемников, устройств считывания;

- устройство считывания для гибридного модуля формата 8х8. Встроенный в устройство считывания RC фильтр с использованием емкости InAs ПЗИ фоточувствительного приемника обеспечил регистрацию координаты импульсных оптических сигналов с пороговой энергией ~ 810-17 Дж/элемент и времени прихода с точностью не хуже 100 нс .

2. Математическая модель, методики анализа системы фотодиод-устройство ввода с прямой инжекцией заряда дают возможность проводить численное моделирование многоэлементных ИК ФПУ, определить требования к конструктивным и фотоэлектрическим параметрам системы, необходимые для достижения проектных заданий. Проект и опытный образец устройств считывания с фрагментной организацией формата 2х2 элемента входных устройств с увеличенной зарядовой емкостью.

3. Схемотехнические решения, проекты и промышленные образцы устройств считывания с ПЗИ элементов для многоэлементных ИК ФПУ, в частности:

- устройства считывания для линейчатого гибридного модуля формата 2х192.

- устройства считывания для матричных гибридных модулей форматов 128х128, 256х256, ИК ФПУ различного назначения на их основе;

Все разработанные устройства, способы считывания основаны на оригинальных схемотехнических решениях и защищены 27 Авторскими свидетельствами СССР или патентами РФ.

Личный вклад автора. Автор диссертации был ответственным исполнителем научно – исследовательских и опытно-конструкторских работ в период 1979-1992 годы. В этот период были выполнены начальные работы по разработке устройств считывания с элементами предпроцессорной обработки фотосигналов. В период с 1992-2008 годы были разработаны устройства считывания для матричных и линейчатых многоэлементных ИК ФПУ на основе InAs ПЗИ элементов. Автор обосновал применение ПЗИ элементов в коротковолновом диапазоне до 3-3.5 мкм. Разработал топологии кристаллов фотоприемных элементов, принципиальные схемы, проекты кристаллов устройств считывания и конструкцию гибридных модулей для линейчатых ИК ФПУ форматов 2х192 элементов, гибридного модуля пеленгатора формата 8х8, матричных устройств считывания форматов 128х128, 256х256 элементов. Принимал участие в исследованиях ИК ФПУ на их основе.

Апробация работы. Результаты диссертационной работы докладывались: на конференции “Физические проблемы МДП-интегральной электроники” (Севастополь, 1982 г), на межведомственном совещании по проблеме цифровой обработки информации (Москва, НИИ прикладной физики, январь 1985 г.), на “XVII международной конференции по фотоэлектронике и приборам ночного видения”, 27-31 мая 2002 г., Москва, на “XIX международной конференции по фотоэлектронике и приборам ночного видения”, 23-26 мая 2006 г., Москва, на 9 международной конференции «Арсенид галлия и полупроводниковые соединения группы III-V», 3-5 октября 2006 г, Томск, на “VIII российской конференции по физике полупроводников”, Екатеринбург, 30 сентября -5 октября 2007 г, приглашенные доклады на “XX международной конференции по фотоэлектронике и приборам ночного видения”, 27-30 мая 2008 г., Москва.

Публикации. По теме диссертации опубликовано 49 работ, включая 18 авторских свидетельств CCCР (17 в соавторстве), 9 патентов РФ (3 в соавторстве), 21 статье (16 в соавторстве), опубликованных в ведущих рецензируемых отечественных и международных журналах, в том числе 18 статей в рекомендованных ВАК РФ, в коллективной монографии.

Объем и структура диссертации. Диссертация состоит из введения, пяти глав и заключения. Объем диссертации составляет 316 страницы, включая 136 рисунков, 12 таблиц, список литературы из 339 наименований, приложения.

Похожие диссертации на Системы считывания для многоэлементных ИК ФПУ третьего поколения