Электронная библиотека диссертаций и авторефератов России
dslib.net
Библиотека диссертаций
Навигация
Каталог диссертаций России
Англоязычные диссертации
Диссертации бесплатно
Предстоящие защиты
Рецензии на автореферат
Отчисления авторам
Мой кабинет
Заказы: забрать, оплатить
Мой личный счет
Мой профиль
Мой авторский профиль
Подписки на рассылки



расширенный поиск

Статическая и динамическая прочность трубной системы горизонтальных сетевых подогревателей теплофикационных турбин Билан Андрей Витальевич

Диссертация - 480 руб., доставка 10 минут, круглосуточно, без выходных и праздников

Автореферат - бесплатно, доставка 10 минут, круглосуточно, без выходных и праздников

Билан Андрей Витальевич. Статическая и динамическая прочность трубной системы горизонтальных сетевых подогревателей теплофикационных турбин: диссертация ... кандидата Технических наук: 05.04.12 / Билан Андрей Витальевич;[Место защиты: ФГАОУ ВО «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»], 2018.- 135 с.

Введение к работе

Актуальность темы. В последние десятилетия в энергетике России произошли структурные изменения в потреблении тепловой и электрической энергии, что привело к существенному изменению режимов работы теплофикационных турбин, к частым пускам и остановам оборудования, которое проектировалось для работы преимущественно в базовых режимах. Новые, непредусмотренные при проектировании, условия работы приводят к уменьшению ресурса мощных теплофикационных турбоустановок, в том числе сетевых подогревателей горизонтального типа (ПСГ).

Наиболее повреждаемым элементом ПСГ является трубная система. Анализ эксплуатации ПСГ производства Уральского турбинного завода (АО “УТЗ”), проведенный станциями Москвы, Санкт-Петербурга, Киева совместно с научно-исследовательскими институтами МЭИ, ВТИ, НПО ЦКТИ, УрФУ показывает, что имеется коррозионное растрескивание трубок под напряжением, которое при плохом качестве сетевой воды приводит к полной замене трубных пучков через 5…7 лет работы. Заглушение поврежденных трубок приводит к уменьшению поверхности теплообмена и возрастанию гидравлического сопротивления, увеличению недогрева и, как следствие, к понижению экономичности всей турбоустановки.

В последнее время станции заказывают ПСГ на давление по воде 1,6…1,8 МПа, что фактически в 2 раза больше, чем в эксплуатируемых в настоящее время подогревателях на давление 0,8…1,1 МПа. Ведутся разработки ПСГ на давление 2,5 МПа по сетевой воде. Повышенное давление приводит к увеличению напряжений в трубных досках, трубках, корпусе, компенсаторе, а это требует новых конструктивных решений, которые должны быть обоснованы более точным учетом условий работы всех элементов ПСГ.

Поэтому совершенствование методов расчета на прочность трубной системы ПСГ с применением современных численных методов и исследование напряженно - деформированного состояния (НДС) всех элементов является

актуальной задачей, решение которой позволит создавать оптимальные конструкции проектируемых подогревателей, а также повысить ресурс находящихся в эксплуатации.

Степень разработанности темы

Имеются опубликованные результаты исследований, проведенных на станциях, посвященных анализу повреждаемости трубной системы ПСГ, в том числе влиянию на нее режимов эксплуатации турбины. Для расчета трубных досок на заводах используются руководящие указания НПО ЦКТИ и ГОСТ Р 52857.7-2007, которые не учитывают прогиб трубных досок и не позволяют определить напряжения растяжения-сжатия трубок в зависимости от их расположения в трубном пучке.

Существующие методики расчета трубной системы ПСГ на вибрацию не учитывают напряжения растяжения-сжатия трубок, что может вносить значительную погрешность в результаты.

Цели и задачи исследования:

Разработка уточненной методики расчета на прочность ПСГ как взаимосвязанной системы: трубные доски, трубки, корпус, компенсатор с применением метода конечных элементов (МКЭ).

Исследование НДС всех элементов трубной системы ПСГ с целью повышения их надежности и увеличения ресурса.

Оценка влияния неравномерности нагрева сетевой воды по ходам на напряжения в трубках ПСГ.

Разработка новых конструктивных решений по повышению надежности трубной системы.

- Разработка программного комплекса по проектированию сетевых
подогревателей и внедрение его в промышленную эксплуатацию в АО “УТЗ”.

Научная новизна. В работе получен ряд новых результатов:

- Разработана уточненная методика расчета ПСГ как взаимосвязанной
системы всех элементов МКЭ, дающая более точные результаты, чем раздельный
расчет на прочность трубных досок, трубок, корпуса, компенсатора.

Автоматизированным способом создана 3D модель ПСГ-4900, используемая для расчетов в ANSYS.

Впервые исследован спектр собственных частот трубного пучка ПСГ с учетом имеющихся напряжений растяжения-сжатия в трубках. Доказано, что отстройка от резонанса на 50 Гц возможна только повышением первой собственной частоты трубок выше 60 Гц.

Доказано, что при использовании влажного пара или перегретого на 30…50 С и особенно при повышенных давлениях сетевой воды 1,6…1,8 МПа предпочтительнее бескомпенсаторная конструкция ПСГ или со встроенным в трубную доску компенсатором.

Доказано, что при использовании перегородок между ходами водяных камер в качестве анкерных связей допустимо утонить трубную доску до толщины 60 мм, определяемой условиями прочности и плотности вальцовочного соединения трубок. При этом существенно уменьшаются максимальные растягивающие напряжения в трубках с 50…110 до 20…25 МПа и увеличивается их ресурс.

Теоретическая и практическая значимость работы:

Разработанная автором методика реализована в виде комплекса программ по автоматизированному и оптимальному проектированию ПСГ в АО «УТЗ».

Показана возможность частичной компенсации напряжений за счет утонения края трубной доски.

При работе ПСГ на перегретом паре предложен односторонний компенсатор, который работает при повышенных температурах пара.

- Для уменьшения габаритов компенсатора предложен компенсатор,
располагаемый между корпусом и трубной доской, а также его комбинация с
компенсатором, встроенным в корпус, что уменьшает вес трубной доски.

Обоснована необходимость повышения первой частоты трубок выше 60 Гц и предложен для этого один из способов реализации – двойные перегородки.

Разработана конструкция водяных камер с анкерными связями, в качестве которых выступают перегородки между ходами, что позволяет заменить

эллиптические днища на плоские и приводит, при неизменной поверхности теплообмена, к существенному сокращению длины ПСГ (до 1,2 м), утонению трубной доски, уменьшению напряжений в трубках и увеличению их ресурса.

Методология и методы диссертационного исследования базируются на применении научно обоснованной теории механики деформированного твердого тела, метода конечных элементов, численных методов решения систем уравнений и определения собственных значений, использовании сертифицированного программного обеспечения ANSYS.

На защиту выносятся:

Обоснование и результаты разработки уточненной методики расчета на прочность ПСГ как взаимосвязанной системы: трубные доски, трубки, корпус, компенсатор с применением МКЭ.

Результаты исследования спектра собственных частот трубного пучка ПСГ с учетом имеющихся напряжений растяжения-сжатия в трубках. Доказано, что отстройка от резонансов возможна только повышением первой собственной частоты выше 60 Гц.

Исследование влияния компенсатора на напряжения растяжения-сжатия в трубках. Обоснование бескомпенсаторной конструкции при использовании влажного пара или перегретого на 30…50 С и особенно при повышенных давлениях сетевой воды 1,6…1,8 МПа, которая приводит к меньшим напряжениям в трубках и повышению их ресурса.

Результаты исследования и обоснование конструкции водяных камер с перегородками между ходами, используемыми в качестве анкерных связей, что уменьшает изгибные напряжения в трубной доске и позволяет уменьшить ее толщину, а также уменьшает напряжения в трубках и увеличивает их ресурс.

Достоверность и обоснованность результатов обеспечивается применением апробированных методов расчета на прочность, в том числе метода конечных элементов, проведением многочисленных тестов по известным решениям задач колебания стержней, изгиба перфорированных пластин.

Были выполнены расчеты ПСГ в осесимметричной постановке, а также со смещением трубного пучка и различных температур трубок по ходам в 3D постановке с помощью комплекса ANSYS, подтверждена обоснованность принятых упрощений при инженерных расчетах.

Были проведены экспериментальные измерения напряжений в корпусе и периферийных трубках при гидроиспытаниях ПСГ-2200 с латунными (ЛО70-1) трубками турбины Тп-100/110-90. Получено соответствие расчетных и экспериментальных максимальных напряжений с точностью 10% (2 МПа), что находится в пределах погрешности тензометрирования.

Реализация результатов. Комплекс программ и полученные результаты исследований используются в АО «УТЗ». Разработанная методика расчета трубных досок утверждена НПО ЦКТИ. Проведено исследование и обоснование конструкции ПСГ, спроектированных и изготовленных АО «УТЗ»:

ПСГ-2200-3-16 на повышенное давление по воде 1,6 МПа без компенсатора для турбины Тп-100/110-90, установленной на Сибирском химическом комбинате.

ПСГ-1250-3-18 на повышенное давление по воде 1,8 МПа без компенсатора для турбины Т-95/105-8,8, установленной на Петропавловской ТЭЦ-2 (Казахстан).

Модернизированного ПСГ-4900-3-11,4, работающего на перегретом паре, с утонением трубной доски, имевшей толщину 135 мм, на 30 мм, и уменьшением веса ПСГ на 5 тонн для турбины Т-295/335-23,5 ТЭЦ-22 ПАО «Мосэнерго».

Апробация работы. Основные материалы диссертационной работы обсуждены и доложены на: Международной научно-технической конференции «Совершенствование турбоустановок методами математического и физического моделирования» (Харьков, 2006 г., 2009 г.); Всеукраинской научно-технической конференции (Харьков, НТУ «ХПИ», 2013 г.); ХХХХV Всероссийском симпозиуме по механике и процессам управления (Миасс, 2015 г); Второй научно-технической конференция молодых ученых Уральского энергетического института (Екатеринбург, 2017 г.)

Публикации. Основные положения и выводы изложены в 14 печатных работах, в том числе в трех публикациях в рецензируемых научных журналах, определенных ВАК; двух патентах на изобретение; трех патентах на полезную модель.

Структура и объем диссертации. Диссертационная работа состоит из введения, 4 глав, заключения, библиографического списка из 104 наименований. Весь материал изложен на 135 страницах машинописного текста, содержит 46 рисунков, 18 таблиц, 1 приложение.