Содержание к диссертации
Введение
1. Разработка методик расчета и выбора типов шумовых термометров заданной точности 15
1.1. Постановка задачи
1.2. Метод шумовой термометрии 17
1.3. Классификация средств шумовой термометрии... 19
1.4. Классификация погрешностей шумовой термометрии 28
1.5. Погрешность метода шумовой термометрии 30
1.6. Вывод уравнений инструментальной погрешности измерений температуры средствами шумовой термометрии ... 35
1.6.1. Определение функции преобразования шумового термометра непосредственной оценки.
1.6.2. Построение градуировочной характеристики шумового термометра непосредственной оценки 39
1.6.3. Вывод уравнений инструментальной погрешности измерений температуры шумовым термометром непосредственной оценки 40
1.6.4. Вывод уравнений инструментальной погрешности измерений температуры шумовыми термометрами других типов. 43
1.7. Разработка методик расчета шумовых термометров различных типов на основе сравнительного анализа влияния на их точность погрешностей измерительных пре образователей 45
1.7.1. Сравнительный анализ влияния погрешностей первичных измерительных преобразователей на точность шумовых термометров различных типов 45
1.7.2. Сравнительный анализ влияния погрешностей линий связи на точность шумовых термометров различных типов... 47
1.7.3. Сравнительный анализ влияния погрешностей масштабных и промежуточных измерительных преобразователей на точность шумовых термометров различных типов... 53
1.7.4. Сравнительный анализ влияния погрешностей оценок выходных сигналов на точность шумовых термометров различных типов 56
1.7.5. Сводные результаты сравнительного анализа и разработка методик расчета шумовых термометров различных типов 57
1.8. Определение критериев выбора типов разрабаты ваемых шумовых термометров по результатам обзора и классификации основных областей применения средств шумовой термометрии 59
1.8.1. Обзор и классификация основных областей применения средств шумовой термометрии...
1.8.2. Определение критериев выбора типов разрабатываемых шумовых термометров 67
1.9. Разработка методик выбора типов шумовых термометров по критериям максимальной технико-экономической эффективности при ограниченном и неограниченном времени измерений 70
1.10. Выбор типа разрабатываемого шумового термометра 71
1. II. Выводы 73
2. Разработка прецизионного шумового термометра замещения и теоретическое исследование его точностных характеристик 75
2.1. Постановка задачи
2.2. Оптимизация шумового термометра замещения по критерию минимального среднего квадратического отклонения результата измерений температуры
2.3. Оценка уменьшения взаимного влияния каналов обработки шумового сигнала в оптимизированном термометре по сравнению с неоптимизированным 81
2.4. Разработка первичных измерительных преобразователей и оценка вносимых ими погрешностей 86
2.4.1. Выбор типа первичных измерительных преобразователей по результатам их классификации и сравнительного анализа
2.4.2. Разработка методики расчета параметров первичных измерительных преобразователей заданной точности 90
2.4.3. Расчет параметров первичных измерительных преобразователей и оценка систематических составляющих вносимых ими погрешностей ... 92
2.4.4. Оценка неисклгаченных систематических и случайных составляющих погрешностей, вносимых первичными измерительными преобразователями 94
2.5. Разработка линий связи и оценка вносимых ими погрешностей. 95
2.5.1. Разработка теплофизической модели и методики конструирования шумовых термометров как приборов контактной термометрии 96
2.5.2. Расчет параметров линий связи 103
2.5.3. Оценка систематических составляющих погрешностей, вносимых линиями связи 106
2.5.4. Оценка неисключенных систематических и случайных составляющих погрешностей,вносимых линиями связи 109
2.6. Разработка масштабного измерительного преоб разователя и оценка вносимых им погрешностей 110
2.6.1. Разработка коммутатора масштабного измерительного преобразователя III
2.6.2. Разработка предусилителя масштабного измерительного преобразователя.. 115
2.6.3. Разработка основного усилителя и фильтров масштабного измерительного преобразователя 117
2.6.4. Оценка систематических составляющих погрешностей, вносимых масштабным измерительным преобразователем 118
2.6.5. Оценка неисключенных систематических и случайных составляющих погрешностей, вносимых масштабным измерительным преобразователем. 119
2.7. Разработка промежуточного измерительного преобразователя и регистрирующего устройства. Оценка вносимых ими погрешностей 121
2.8. Оценка и сравнительный анализ точностных характеристик оптимизированного и неоптимизированного шумовых термометров 126
2.8.1. Оценка и сравнительный анализ систематических погрешностей измерений температуры оптимизированным и неоптимизированным шумовыми термометрами
2.8.2. Оценка и сравнительный анализ неисключенных систематических и случайных погрешностей измерений температуры,обусловленных влиянием собственных шумов оптимизированного и неоптимизированного шумовых термометров 132
2.8.3. Обзор и выбор схемотехнических решений, предназначенных для уменьшения погрешностей, обусловленных влиянием собственных шумов аппаратуры. Оценка
эффективности их подавления 135
2.8.4. Оценка неисключенных систематических и случайных погрешностей,обусловленных неидеальностью линейных систем, введенных для оптимизации шумового термометра 139
2.8.5. Оценка и сравнительный анализ неисключенных систематических и случайных погрешностей измерений температуры оптимизированным и неоптимизированным шумовыми термометрами 143
2.8.6. Сводные результаты сравнительного анализа погрешностей измерений температуры оптимизированным и неоптимизированным шумовыми термометрами 147
2.9. Разработка математического ( программного ) обеспечения оптимизированного шумового термометра 150
2.10. Выводы 152
3. Экспериментальное исследование точностных характеристик разработанного шумового термометра 155
3.1. Постановка задачи
3.2. Экспериментальное исследование систематических составляющих погрешности измерений
3.3. Экспериментальное исследование неисключенных систематических и случайных составляющих погрешности измерений 157
3.4. Разработка методики и результаты экспериментального определения параметров шумового термометра, обеспечивающих минимальное значение суммы неисключенной систематической и случайной погрешностей, обусловленных влиянием собственных шумов 162
3.4.1. Оценка минимального значения суммы неисключенной систематической и случайной погрешностей, обусловленной влиянием собственных шумов 162
3-4.2. Описание предлагаемой методики и результатов экспериментального определения параметров шумового термометра, обеспечивающих минимальное значение суммы неисключенной систематической и случайной погрешностей, обусловленных влиянием собственных шумов 164
3.5. Разработка методики и результаты экспериментального определения параметров шумового термометра, обеспечивающих минимальное значение суммы неисключенной систематической и случайной погрешностей, обусловленных неидеальностью линейных систем, введенных для его оптимизации 168
3.6. Сводные результаты теоретических и экспериментальных исследований точностных характеристик разработанного шумового термометра. 171
3.7. Выводы 174
4. Измерение термодинамической температуры разработанным шумовым термометром 176
4.1. Постановка задачи
4.2. Описание комплекса аппаратуры разработанного шумового термометра, предназначенного для измерений термодинамической температуры 177
4.3. Постановка эксперимента 179
4.4. Результаты эксперимента 180
4.5. Выводы 182
5. Бездемонтажная поверка рабочих термометров сопротивления разработанным шумовым термометром 183
5.1. Постановка задачи..
5.2. Разработка способа бездемонтажной поверки рабочих термометров сопротивления 184
5.3. Описание комплекса аппаратуры разработанного шумового термометра, предназначенного для бездемонтажной поверки рабочих термометров сопротивления 186
5.4. Постановка эксперимента 188
5.5. Результаты эксперимента 191
5.6. Выводы 194
Заключение. 195
Список использованной литературы 198
Приложение
- Вывод уравнений инструментальной погрешности измерений температуры средствами шумовой термометрии
- Оптимизация шумового термометра замещения по критерию минимального среднего квадратического отклонения результата измерений температуры
- Экспериментальное исследование систематических составляющих погрешности измерений
- Описание комплекса аппаратуры разработанного шумового термометра, предназначенного для измерений термодинамической температуры
Введение к работе
Одним из направлений экономического и социального развития СССР на I98I-I985 годы и на период до 1990 года является расширение производства приборов и измерительных устройств для научных исследований и контроля за расходованием топливно-энергетических ресурсов /I/. Это ставит перед приборостроителями и метрологами очередные задачи, направленные на разработку новых и совершенствование существующих методов и средств измерений температуры.
Основой единства измерений температуры является условная Международная практическая температурная шкала МПТШ-68, базирующаяся на первичной термодинамической температурной шкале.
Государственные эталоны и образцовые средства осуществляют воспроизведение и передачу размера кельвина по МПТШ-68, которая лишь с некоторой конечной степенью точности приближается к термодинамической температурной шкале. Это нарушает единство измерений температуры. Возникает задача разработки государственных эталонов и образцовых мер, воспроизводящих термодинамическую температурную шкалу как единственно физически верную. Это - фундаментальная работа, закладывающая основы современной и будущей термометрии /2/.
Для решения поставленной задачи в НПО "ВНИИМ им. Д.И. Менделеева" наряду с совершенствованием широко известных средств газовой термометрии разрабатываются новые прецизионные средства измерений, основанные на методе шумовой термометрии /3/. Обзор и классификация основных областей применения этих средств выполнены в п.1.8.1. Здесь отметим, что
10 метод шумовой термометрии также перспективен для решения задач контроля за расходованием топливно-энергетических ресурсов. Присущие этому методу особенности позволяют эффективно использовать его для метрологического обеспечения низкотемпературных термометров сопротивления, установленных на криогенных объектах. Применяемые в настоящее время низкотемпературные термометры нуждаются б периодической поверке, требующей их демонтажа с полной остановкой и разборкой всего криогенного оборудования. Такие операции имеют высокую себестоимость и сопровождаются большими потерями времени. Метод шумовой термометрии принципиально позволяет производить безде-монтажную поверку рабочих термометров сопротивления непосредственно на объектах их эксплуатации, что повышает уровень технико-экономической эффективности метрологического обеспечения поверочных операций.
Для реализации перечисленных достоинств указанного метода измерений необходима разработка высокоточных средств шумовой термометрии.
Таким образом, данная диссертационная работа, направленная на создание прецизионного шумового термометра, является актуальной и имеет важное народно-хозяйственное значение. Это подтверждается также тем, что затронутые в ней проблемы отражены в плане экономического и социального развития СССР, планах развития естественных наук, разработанных Академией наук СССР, и в планах метрологических исследований по обеспечению единства измерений в стране, разработанных Госстандартом.
Цель настоящей работы - разработка и исследование прецизионного шумового термометра, предназначенного для измерения термодинамической температуры в лабораторных условиях и
осуществления бездемонтажной поверки рабочих термометров сопротивления в промышленных условиях.
Для достижения указанной цели в диссертации поставлена задача на основе исследований метода и средств шумовой термометрии в метрологическом аспекте, систематизации этих средств и их погрешностей, а также оптимизации их параметров по заданным критериям разработать прецизионный шумовой термометр, изучить его точностные характеристики и с его помощью провести измерение термодинамической температуры и осуществить бездемонтажную поверку рабочих термометров сопротивления.
В поставленной научной задаче может быть выделен ряд вопросов, подлежащих решению в данной работе:
разработать методики расчета и выбора типов шумовых термометров заданной точности;
разработать прецизионный шумовой термометр и провести теоретическое исследование его точностных характеристик;
проверить экспериментально основные результаты проведенных теоретических исследований;
провести измерения термодинамической температуры;
осуществить бездемонтажную поверку рабочих термометров сопротивления.
В диссертации использованы методы теории измерений, теории теплообмена,теории вероятностей и математической статистики, теории обнаружения и оценок сигналов. Основные теоретические результаты проверены експериментально.
Решение теоретических задач посвящены первые два раздела настоящей работы. Результаты экспериментальных исследований приводятся в остальных трех разделах.
В аннотированном виде то новое, что вносится автором в
12 исследование проблемы, может быть сформулировано следующим образом.
Систематизированы средства шумовой термометрии и их погрешности. На этой основе установлены и сопоставлены между собой аналитические зависимости, характеризующие точностные параметры шумовых термометров различных типов и разработаны методики расчета и выбора типов шумовых термометров заданной точности по критериям максимальной технико-экономической эффективности при ограниченном и неограниченном времени измерений.
Поставлена и решена математическая задача оптимизации шумовых термометров замещения по критерию минимального среднего квадратического отклонения результата измерений температуры.
Разработаны методики экспериментального определения параметров оптимизированных шумовых термометров замещения, обеспечивающие минимальное значение суммы неисключенной систематической и случайной составляющих погрешности измерений, обусловленных влиянием собственных шумов и неидеальностью систем, введенных для оптимизации шумовых термометров.
Построена физическая модель линий связи шумовых термометров, на основе которой получены аналитические выражения, характеризующие условия минимизации систематической погрешности измерений, обусловленной совместным влиянием теплофи-зических, электрических и геометрических параметров линий связи шумовых термометров. Экспериментальная проверка показала правильность предложенной модели.
Использование оптимизированных схем построения, предложенных методик выбора типов, а также теоретического и экспериментального определения теплофизических, электрических и
ІЗ геометрических параметров шумовых термометров позволило повысить их точность и разработать шумовой термометр для измерения термодинамической температуры со средним квадратиче-ским отклонением результата измерений 0,003 % в диапазоне (90 - 273) К. С его помощью измерена термодинамическая температура равновесия между жидкой и парообразной фазами кислорода при нормальном атмосферном давлении. Достигнутая точность измерений соответствует современному уровню знаний о значении этой репернои точки.
В диссертации предложен и исследован способ градуировки термометров сопротивления при наличии импульсных аддитивных помех, характерных для промышленных условий эксплуатации шумовых термометров. С помощью аппаратуры, реализующей способ, осуществлена бездемонтажная поверка рабочих термометров сопротивления в промышленных условиях, что позволило повысить технико-экономическую эффективность метрологического обеспечения поверочных операций.
На защиту выносятся следующие основные результаты и научные положения.
Результаты сличения термодинамической температуры репернои точки кипения кислорода, измеренной разработанным шумовым термометром, и температуры, приписанной этой репернои точке в соответствии с МПТШ-68.
Способ градуировки термометров сопротивления при наличии импульсных аддитивных помех и реализующая способ аппаратура, с помощью которой осуществлена бездемонтажная поверка рабочих термометров сопротивления методом шумовой термометрии в промышленных условиях эксплуатации.
Результаты систематизации средств шумовой термометрии и их погрешностей, позволившие
установить и сопоставить между собой аналитические зависимости, определяющие точностные характеристики шумовых термометров различных типов;
разработать методики расчета и выбора типов шумовых термометров заданной точности.
Совокупность результатов теоретических и экспериментальных исследований, позволивших
оптимизировать параметры шумовых термометров по заданным критериям на основе установленных аналитических зависимостей составляющих погрешности измерений в функции влияющих параметров;
разработать прецизионный шумовой термометр, характеризующийся средним квадратическим отклонением результата измерений температуры 0,003 % в диапазоне (90 - 273) К.
Вывод уравнений инструментальной погрешности измерений температуры средствами шумовой термометрии
Исходные данные и принятые допущения: е) ЛС и МП считаются нешумящими линейными системами; ж) ПрП содержит квадратор с характеристикой у=(Ккх) , где А"к - коэффициент передачи квадратора; з) наличием в схеме РУ пренебрежем,так как современные, например цифровые, РУ имеют ничтожную погрешность по сравне нию с погрешностями аналоговых устройств ШТ. Рассмотрим прохождение сигнала по схеме ШТН. Спектральная плотность среднего квадрата шумового напряжения, генерируемого ПП, определится формулой (1.02), Используя принятые допущения, запишем выражение для спектральной плотности сигнала на выходе МП /59/: Для нахождения момента первого порядка сигнала на выходе ПрП, в котором осуществляется нелинейное преобразование случайного процесса, необходимо определить автокорреляционную функцию сигнала на его входе W (х) . С помощью интегрального преобразования Фурье найдем авто корреляционную функцию сигнала со спектральной плотностью, определяемой выражением (I.I2): Применяя теорему о разбиении интервала интегрирования, запишем равенство (I.I3) в виде: Здесь, согласно условию СІЛІ), величина К (сл) в среднем интеграле равна единице, а в крайних - нулю- Следовательно, последние обращаются в нуль. Известно /59/, что после прохождения последовательно включенных линейных систем стационарный случайный процесс с нулевым средним и бесконечным равномерным спектром как в нашем случае,остается стационарным случайным процессом с нулевым средним: tn О, а закон распределения выходного сигнала можно считать нормальным. После квадрирования ковариционная функция выходного сигнала Vv r) определяется через автокорреляционную функцию сигнала на входе W(v) по формуле /59/ где J] - дисперсия случайного процесса на входе ПрП.
Величину JQ можно найти, пользуясь одним из основных свойств автокорреляционной функции /59/: I) W(x) o , В нашем случае т = 0, поэтому U легко определить из (1.14), прировняв х к нулю; при этом cos со г = I и выражение (1.14) примет вид: Интеграл в формуле (ІЛ6) - табличный /60/, что позво ляет найти величину D : Полагая О ЙС і что обязательно должно выполнять ся практически, разлоким в ряд функцию у=. М При огра ничении членов ряда двумя получим Интеграл во втором слагаемом приводится к табличному путем разложения в ряд функции у=-У /(\ + со г ) г При t- o этот интеграл стремится к нулю.Момент первого порядка сигнала на выходе ПрП (а значит и всего ШТ, поскольку наличие в схеме РУ не учитывается) определим, пользуясь тем,что при ъ значение ковариционной функции равно квадрату постоянной составляющей /59/. С учетом всех коэффициентов преобразования запишем выражение для момента первого порядка сигнала на выходе 1DT в следующем виде: фициент преобразования ШТН. Уравнение (1.20) описывает функцию преобразования ШТН. Для установления зависимости между т и f в соответствии с уравнением (1.20), то есть для построения ГХ, необходимо знать численное значение коэффициента преобразования ШТН. Прямые измерения или теоретический расчет величин неизвестных сомножителей, входящих в выражение для /Сг как правило,приводят к недопустимо большой погрешности определения К-х ля постРоения ГХ обычно измеряют момент первого порядка сигнала на выходе ШТН fft при известной температуре Т0 и определяют коэффициент преобразования ШТН по формуле параметры ІІІТ и отличительные свойства условий, которые имеют место при построении ГХ. Разделив друг на друга одноименные части выражений (1,20) и (l,2l) и решив получившееся уравнение относительно Т получим обобщенную рабочую формулу ШТН: ШТН конструируют так, чтобы выполнялось A"r = 0 z и чтобы как можно больше сомножителей,входящих в выражения для /С и Л и с трудом поддающихся прямым измерениям или аналитическому расчету, сокращались в уравнении Сі.22), то есть были равны друг другу: За счет этого повышается точность ШТН. Анализ уравнений (1.20)-(1.22) показывает, что при построении ГХ истинная функция преобразования ШТН аппроксимируется линейной зависимостью. Влияние возможной нелинейности истинной функции преобразования сложно оценить в общем виде. Обычно для оценки ее влияния и введения поправок используют набор экспериментальных данных, полученных при измерении величин т для различных значений 7 0 _ При теоретическом исследовании инструментальных погрешностей средств шумовой термометрии этой составляющей погрешности пренебрежем.
Оптимизация шумового термометра замещения по критерию минимального среднего квадратического отклонения результата измерений температуры
В момент подключения ПП путь прохождения сигнала по измерительным преобразователям ШТЗ и ШТС не отличается от пути прохождения сигнала по измерительным преобразователям ІііТН в режиме измерения температуры. В момент подключения ОПП путь прохождения сигнала по измерительным преобразователям ШТЗ и ШТС ничем не отличается от пути прохождения сигнала по измерительным преобразователям ШТН в режиме построения ГХ. Следовательно,функции преобразования ШТЗ и ШТС при измерении температуры и при построении ГХ, их обобщенные рабочие формулы, а значит и уравнения всех составляющих инструментальных погрешностей будут иметь тот же вид, что и аналогичные выражения, записанные для ШТН. Единственное отличие состоит в том, что в ШТЗ и ШТС сигналы подаются на МП через коммутатор, обладающий некоторым переходным сопротивлением.Оно искажает значения подключаемых к МП сопротивлений /? , й и их шумовых сигналов. Погрешность, вносимая неидеальностью коммутатора,может быть учтена увеличением погрешностей определения сопротивлений /? и #0 без изменения вида уравнений погрешности. Другие особенности ШТЗ и ШТС, проявляющиеся в выборе различных значений их параметров (например, в ШТЗ Я Ф &а , а в ШТС R Ra и др.) тем более могут быть учтены изменением величин слагаемых уравнений погрешности без изменения вида самих уравнений. В ІііТП построение ГХ и измерение температуры осуществляется с помощью одних и тех же измерительных преобразователей СМП и ПрП) в одно и то же время. Следовательно, систематические погрешности, присущие этим преобразователям, одинаковы в обоих режимах и согласно уравнению систематической погрешности (1.24) взаимно уничтожаются. Для ШТП оно примет вид: Уравнения неисключенной систематической и случайной погрешностей ШТП составляются на основе выражения (I.3I).
Целесообразность введения упрощенного уравнения (I.3I) подтверждена экспериментально: изменение коэффициента передачи МП и ПрП на 200 % никак не повлияло на результат измерения температуры в пределах погрешности ШТП (I %) /6/. Таким образом, в рамках принятых допущений уравнения инструментальных погрешностей ШТН, ДІТЗ и ШТС имеют один и тот же вид, а уравнения ШТП отличаются тем,что в них опущены слагаемые погрешностей,вносимых МП и ПрП. В целом полученные уравнения инструментальных погрешностей позволяют с единых позиций сравнить между собой ШТ различных типов с учетом алгоритмов их работы, оценить степень влияния на суммарную погрешность неидеальности их измерительных преобразователей и структурных элементов, чтобы в конечном итоге в соответствии с принятыми критериями выбрать для решения поставленной задачи ШТ наиболее подходящего типа. Одним из основных параметров ШТ как разновидности измерительных приборов является точность измерений температуры. ШТ тех или иных типов при использовании в них равноточных измерительных преобразователей и структурных элементов обладают различной точностью, характеризуемой выведенными ранее уравнениями инструментальных погрешностей. Это объясняется неодинаковым влиянием на суммарную погрешность неидеальности измерительных преобразователей и структурных элементов в ШТ разных типов,Используя полученные ранее уравнения инструментальных погрешностей,оценим степень влияния на суммарную погрешность неидеальности равноточных измерительных преобразователей и структурных элементов в ШТ различных типов.Это позволит предложить методики расчета ШТ различных типов, рекомендующие наиболее целесообразную последовательность разработки их измерительных преобразователей.
Экспериментальное исследование систематических составляющих погрешности измерений
Слагаемые систематической погрешности измерений перечислены в табл.2 7. Входящие в их число погрешности А7"и и А7"п , обусловленные неидеальностыо входных каскадов мП, Б настоящее время с достаточной степенью точности могут быть оценены только теоретически /43/. Проведем окспериментальное исследование оставшихся составляющих систематической погрешности А7 и &ТСА , обусловленных существованием неоднородного температурного поля вдоль медных подводящих проводов линий связи, имеющих электрические сопротивления /?и и В разработанном кї в качестве расчетных значений сопротивлений, входящих в рабочую формулу \2 в1) t принимались сопротивления fi+fij и &0+#oJi . :ю формуле, аналогичной (2.43), получим, что погоешность измерения температуры при подключении ПИ в наихудшем случае 7 = 90 К) составляла для определения погрешности А Тл р неооходимо узнать значения входящих з эту формулу величин ЙА и /
Сопротивление J?A t измеренное при закороченном сопротивлении /г с помощью потенциометра Р343, составило $л = 0,о45 Ом. для нахождения 7 5 будем рассматривать подводящие провода ЛО как: медный термометр сопротивления. Такие термометры имеют практически линейную градуировочную характеристику в интересующем нас температурном диапазоне /Ldh/t что позволяет определить 7" э на основе измерений параметров JiC в двух температурных точках. Сопротивление подводящих проводов jiO, находящейся при температуре точкл таяния льда, было измерено с помощью прибора 34S и составило 0tZ .3 Ом. Сопротивление подводящих прозодов ль, полностью погруженной в жидкий кислород при температуре 9о, я, составило OtOku Ом, Отсюда То есть ТАЪ = 97 К при /? = 0,іЛб Ом и А7"л? = 0,03 мК. Расчетное значение этом погрешности составляет 0,06 мК. Расхождение полученных значений объясняется тем, что в расчетах значение о выбиралось при 7 = 293 К, а не при действительном значении 7 (см. п.2.5.2). Для нахождения погрешности АТол сопротивление подводящих проводов ОЛС дополнительно было измерено при температуре 293 К. Оно составило 0,219 Ом. В режиме измерения Т0 сопротивление /?ал , определенное при закороченном сопротивлении /?0 , составило &ол = J,2O4 Ом. Отсюда Гоу1 = = 273,15 + (293 - 273,15)(0,2,4 - и иЗ)/(0,Л9 - 0,203). Тс есть 7 лэ - 274 К и ATOJl4 = Ufu7 мК. Расчетное значение этой погрешности составляет 0,02 мК. Расхождение полученных значений объясняется недостаточной точностью измерений сопротивлений подводящих проводов OJlO, Таким образом, в результате проведенных экспериментальных исследований получены пренебрежимо малые значения исследуемых систематических погрешностей. Учитывая погоешности, обусловленные неидеальностыо входных каскадов иП (см. табл. 2.7), получим окончательно, что систематическая погрешность измерений температуры разработанным ц/Г меньше 0,6 мК
Описание комплекса аппаратуры разработанного шумового термометра, предназначенного для измерений термодинамической температуры
Температура точки кипения кислорода — Sw К измерялась разработанным LLT И платиновым термометром T JilH-4, отградуированным по і.-;ПТІ:-68. 1 общественность измеряемых ими температур достигалась одновременностью измерений и установкой Пм и ТСШ-4 в гнезда одного и того :;;е медного олока, помещенного в дыоар с жидким кислородом. для измерений температуры разработанным LT производились следующие подготовительные операции Температура точки кипения кислорода измерялась термометром ТОЩЫ С 7 ) С помощью потенциометра РЗчд измерялось сопротивление По формуле /? = /?0 Т0 / Т л определялось расчетное значение /р Ъ ПП устанавливался резистор G2-i;?b с треоуемым значе нием Р в точке кипения кислорода- Допускаемая погрешность отклонения действительного значения /? от расчетного при нималась равной допускаемой погрешности априорной оценки измеряемой температуры оэ = 0,07 ІЇ. Медный блок с -1П и ГиПН-4 погружался в дыоар с кислородом. ОПП погружался в пробирку с минеральным маслом, предварительно установленную в дюар со снегом, имеющим температуру точки таяния льда. Регулировкой поцстроечного конденсатора ОЛО выравнивались постоянные времени т " и Т см. подраздел 2 3). Допускаемая погрешность выравнивания принята равном Ю %щ Согласно п, .3.4 такая погрешность оказывает пренебрежимо малое воздействие на результат измерения температуры. JJ &ЗМ вводилась программа (см приложение 3), предварительно записанная на магнитную карту. После выполнения перечисленных подготовительных операций автоматически производилось измерение температуры с по-мощью ШТ (см подраздел .3) Наблюдения температуры с помощью термометра ТСПН-4 проводились ежечасно. В течение всего времени измерений их ре-зультаты не должны выходить за границы допускаемой погрешности априорной оценки измеряемой температуры - 100 мК (см. п.2.8,2). При нарушении этого условия эксперимент прекращался и все подготовительные операции повторялись вновь. Результаты измерений температуры точки кипения кислорода разработанным ШТ и платиновым термометром ТСПН-4 приведены в табл.4Л. Предельное расхождение результатов измерений составило 14 мК при СКО б мК.
Б результате I39G0 наблюдений температуры разработанным ІЇЇТ получено среднее значение теомодинамической температурь: 7" = 90,307 К. Среднее значение той же температуры, изме ренное термометром ТОПН-4, отградуированным по МЛТІІ,-68, сос тавило 7l8= 9o,3J4 К. В пересчете к температуре равнове сия мезду жидкой и парообразной тазами кислорода при нор мальном атмосферном давлении эти результаты приводят к зна чениям Т = 90Д9І К при 7 а= 90,156 К. То есть в этой СКО результата проведенных измерений температуры разработанным ШТ по формуле (1 47) составит 2 мК, что соответствует теоретическим и экспериментальным оценкам. СКО измерений температуры термометром ТСПН-4, отградуированным по рабочему эталону единицы температуры, принято равным I мК. О учетом указанных погрешностей измерений температур Т и Т & МО/ЛЄТ быть сделан вывод о том, что в пределах погрешности измерений (СКО 3 мК) расхождения между значением температуры, приписанным репернок точке кипения кислорода пс МПТІі:—SS (30,153 К), и значением, измеренным разработанным шумовым термометром в соответствии с ТТІїї (90,151 К), не обнаружено. Ц.5 с. Произведено сличение термодинамической температурной шкалы и условной шкалы лПТ 1ь-б8 в точке кипения кислорода при нормальном атмосферном давлении, D пределах погрешности измерений расхождения мемду значением температуры,приписанным этой репс оно:" точке по ,,Ш к-б8 ч50ДсЗ К), и значением, измеренным раз шбо тайным шумовым термометром Е соответствии с термодинамической температурної! шсалой(9С,І9І Ю, не обнаружено При бездемонта .нок поверке методом шумовой термометрии поверяемый рабочий термометр со противления ч Pl J) используется в качестве первичного измерительного преобразователя прецизионного иТ (см. n.i.o.i). Таким образом, оездемонтаиная поверка принципиально ничем не отличается от прецизионного измерения температуры обычными LT. ото положение подтверждает сравнительный анализ работ по ыу зовой термометрии и без-демонта:шої: поверке vcJ:., например /ІІ5/ и /ill/). Единственное отличие этих направлений шумовой термометрии заключается в том, что проведение бездемонта;;;ноь поверки РТС требует создания прецизионного L.T, работоспособного при большой длине линии связи (несколько метров в промышленных условиях, характеризуемых высоким уровнем помех, D известных работах /77, ill, lo - idl/ приведены некоторые алгоритмы обработки шумового сигнала и схемы LT, которые,по мнению авторов этих работ,могут быть использованы для бездемонта ной поверки РТС. Однако ни в одной из перечисленных работ не имеется результатов каких-либо экспериментальных исследований указанных средств измерений, что свидетельствует о незавершенности этих работ.