Введение к работе
Актуальность темы.
В данной работе представлен программный комплекс для анализа данных методом распознавания образов (МРО) и результаты его применения при обработке экспериментальных материалов, полученных с использованием твёрдотельных трековых детекторов (ТТД) и для определения характеристик релятивистских заряженных частиц в детекторах черенковского излучения (Ring Imaging Cherenkov detector - RICH-детекторы).
Актуальность данной работы обусловлена важностью проблемы автоматизации обработки данных экспериментов с трековыми детекторами. Трековые детекторы широко используются в экспериментах по физике частиц на протяжении уже многих десятилетий, что связано с их уникальным пространственным разрешением и возможностью разделения треков частиц. Так, например, ни один из применяемых сейчас детекторов элементарных частиц не может обеспечить пространственное разрешение, которое дает ядерная эмульсия: при размере зерна 0.3 – 1 мкм, отклонение зерен от восстановленной траектории движения частицы в среднем не превышает 0.8 мкм, а при определенных условиях может быть уменьшено до 0.2 мкм. Таким образом, трековые детекторы имеют ряд преимуществ перед многими другими системами детектирования. Метод трековых детекторов непрерывно развивается, совершенствуется его методика и в настоящее время он используется в физике высоких энергий, в физике космических лучей, реакторной физике, металлургии, геологии, археологии, медицине, биологии, исследованиях метеоритов и образцов лунных пород.
Одним из недостатков ТТД является то, что просмотр больших площадей детекторов, как правило, с большим увеличением представляет собой достаточно сложную техническую проблему. Обработка данных трековых детекторов, проводившаяся оператором на оптических микроскопах вручную, требовала огромных затрат труда и времени.
В последние годы этот недостаток в значительной мере был преодолен благодаря прогрессу, который достигнут в производстве прецизионной техники, и созданию оптических столов с высокой точностью перемещения по командам от компьютеров, широкому применению современных приборов с зарядовой связью (CCD-камеры) для регистрации и оцифровывания оптических изображений и вычислительным возможностям современных компьютеров. Благодаря применению этих достижений прецизионной механики, возможностям средств вычислительной техники и разработке необходимого программного математического обеспечения стала реальностью полная автоматизация труда микроскопистов. При измерениях в таком автоматическом режиме оцифрованные изображения следов заряженных частиц и ядер в трековых детекторах, полученные при помощи CCD-камер, вводятся в компьютеры, математическое обеспечение которых позволяет производить поиск, распознавание и изучение треков, восстанавливать их пространственное положение. Такие автоматизированные системы уже существуют во многих странах, в частности, в Японии, Италии, Швейцарии (эксперименты CHORUS, OPERA, DONUT).
С 2000 года успешно работает, созданный в ФИАН'е комплекс ПАВИКОМ – Полностью АВтоматизированный Измерительный КОМплекс, в состав которого входят два микроскопа. Изначально комплекс создавался для обработки данных эксперимента EMU-15, в котором эмульсионная камера, включающая свинцовую мишень толщиной 0,4 мм и 38 слоёв фотоэмульсии, облучалась пучком ядер свинца с энергией 158 ГэВ/нуклон.
Универсальность и широкие возможности использованного при создании комплекса оборудования позволили значительно расширить круг решаемых экспериментальных задач. т.е. была реализована возможность обработки разных по своей природе ТТД: фотоэмульсий, пластиков и других твердотельных трековых детекторов. К настоящему времени ПАВИКОМ успешно использовался для анализа данных 9 экспериментов с ТТД. Такая широта охвата различных направлений исследований на ПАВИКОМ требует постоянной доработки программного обеспечения и делает невозможным использование одного программного пакета для всех задач. Основная причина такого подхода связана с тем, что не существует универсальных алгоритмов, применимых для одновременной обработки всех типов изображений, в том числе снимков следов частиц в ТТД различной природы. Это обусловлено большим разнообразием геометрических форм и комбинаций фигур, образуемых следами элементарных частиц в разных материалах, через которые они проходят. В то же время представляется нерациональным создавать множество узкоспециализированных программ по обработке материала каждого отдельного эксперимента.
Именно поэтому была поставлена задача разработки гибкой системы по автоматизированной обработке данных широкого спектра экспериментов с использованием трековых детекторов. Такая система была разработана и реализована автором в виде программного комплекса (ПК) блочно-модульного типа на основе применения метода распознавания образов.
Цели и задачи работы. Целью данной работы было создание универсального ПК для анализа данных трековых детекторов методом распознавания образов и его применение в физике высоких энергий, элементарных частиц и космических лучей. Разработанный ПК успешно используется на многоцелевой установке ПАВИКОМ для автоматизированной обработки данных разнообразных эмульсионных и твёрдотельных детекторов, что фактически сделало установку ПАВИКОМ уникальной.
К настоящему времени на ПАВИКОМ успешно обрабатываются данные, полученные в 9 экспериментах. Каждый из этих экспериментов нацелен на получение важных физических сведений о характеристиках взаимодействий элементарных частиц и ядер при релятивистских энергиях. Объем данных, требующих просмотра и анализа, составлял десятки тысяч изображений. Достигнутая высокая эффективность работы комплекса ПАВИКОМ стала возможной исключительно благодаря автоматизации обработки больших массивов информации.
Таким образом основным результатом данной работы является разработка, создание и применение ПК, позволяющего достаточно просто компоновать специализированные пользовательские программы, способные в автоматическом режиме обрабатывать изображения следов частиц в разных типах ТТД. Результаты, полученные при анализе данных конкретных экспериментов, продемонстрировали высокую эффективность его работы.
В рамках данного ПК, кроме того, была реализована распознающая система, основанная на применении искусственных нейронных сетей. Результаты по обработке изображений RICH-детектора показали её преимущество при определении характеристик космических частиц высоких энергий по сравнению с обычными методами обработки.
Достоверность полученных результатов обусловлена применением современных методов программирования, основанных на объектно-ориентированном подходе к построению программ, и использовании основных принципов и алгоритмов методов распознавания образов, а также современных математических методов обработки результатов. Достоверность также подтверждена соответствием полученных результатов и независимых измерений.
Научная новизна. Разнообразие геометрических форм и комбинаций фигур, образуемых следами частиц в трековых детекторах, приводит к невозможности обработки их изображений с помощью одной программы. Чтобы преодолеть эту трудность и в то же время автоматизировать обработку такого разнообразного набора объектов наиболее оптимальным образом, соответствующее программное обеспечение было реализовано в виде ПК, состоящего из отдельных функциональных блоков. Каждый из этих блоков отвечает за определённый вид обработки и соответствует одному из её этапов. Пользовательский вариант программы собирается из этих блоков в зависимости от характеристик, требуемых от неё, и дополняется программными элементами, связывающими отдельные блоки в единую программу.
Другим важным свойством ПК является его возможность обрабатывать в автоматическом режиме большие массивы изображений (до нескольких тысяч) в одном сеансе. Однако при обработке таких массивов очень часто приходится иметь дело с изображениями очень разными по своим характеристикам. Например, следы треков в толстослойных эмульсиях сильно меняются в зависимости от того, как близко от поверхности плёнки они расположены. Это связано с неравномерностью проявки эмульсии по толщине. Такая ситуация потребовала выработки специальных алгоритмов обработки изображений, которые в зависимости от качества конкретного изображения автоматически настраивают программу на условия, являющиеся оптимальными в данной ситуации.
В ходе работы над рассматриваемым ПК были также разработаны другие оригинальные алгоритмы, в частности, позволяющие проводить классификацию треков, в зависимости от особенностей геометрических и других характеристик следов частиц в материале. При появлении треков с новыми характеристиками созданная система может быть дополнена соответствующими алгоритмами и таким образом носит открытый характер и допускает расширение и развитие применительно к новым задачам и условиям обработки.
Особенности изображений детекторов некоторых экспериментов потребовали создания специальных блоков, использующих более сложные подходы: нейронные сети и метод нечётких множеств.
Научное и практическое значение работы определяется актуальностью задачи по обработке данных в физике высоких энергий, элементарных частиц и космических лучей. Особенностью разработанного ПК является возможность создавать программные пакеты на основе функциональных модулей, каждый из которых может воспроизводить определённые этапы обработки изображений и анализа треков с учётом особенностей конкретной задачи.
Внедрение результатов работы заключалось в создании пользовательских программ, построенных на основе блоков ПК, для автоматизированной обработки результатов измерений конкретных экспериментов. На основе работы этих программ получены следующие результаты:
проведён анализ треков космических частиц в оливинах из метеоритов и получены зарядовые распределения тяжёлых и сверхтяжёлых ядер в оливине;
исследована структура нейтроноизбыточного ядра 6Не и подтверждено существование динейтронной конфигурации в нём и её важная роль в процессах рассеяния;
таблицы ядерных уровней ядра 161Ho дополнены новыми, ранее неизвестными линиями;
разработана и апробирована методика измерения зарядов в толстослойных фотоэмульсиях;
создана программа по измерению потоков нейтронов в эксперименте "Энергия плюс трансмутация". Использование метода нечётких множеств позволило проводить измерения в условиях больших загрузок;
создана программа с использованием нейронных сетей для анализа изображений RICH-детектора. Показано преимущество данного подхода по сравнению с обычными методами.
Важным достоинством данного ПК является также то, что он не "привязан" жёстко к установке ПАВИКОМ и при необходимости может быть использован при обработке данных на других установках или просто для выделения на изображениях объектов, имеющих характерные признаки.
Личный вклад автора в проведённое исследование.
Автором был создан универсальный, блочно-модульного типа ПК для ПАВИКОМ. При этом автор разработал общую структуру ПК и системный подход к разбиению его на блоки, были созданы наборы классов для описания отдельных элементов структуры, пользовательские программы и получены результаты при обработке данных экспериментов по физике элементарных частиц и космических лучей.
Основные положения и результаты, выносимые на защиту.
I. Программный комплекс (ПК) блочно-модульного типа, созданный по принципу объектно-ориентированных систем для обработки изображений на основе метода распознавания образа, имеющий следующую структуру:
-
Блок, включающий операции с графическими файлами различных форматов и с видеопамятью компьютера для работы с автоматизированным микроскопом.
-
Блок обработки изображений, включающий следующие разделы.
Алгоритмы линейных преобразований изображений (градиентные, Лапласа, сглаживающие и т.д.).
Алгоритмы нелинейных преобразований изображений (медианные фильтры, повышение контраста и яркости, логические операции и т.д.).
Операции с гистограммой почернений (аппроксимация пиков несколькими функциями Гаусса, алгоритмы поиска порога отсечения фона, автоматизированная оценка качества изображений).
Операции по выделению кластеров треков и элементов треков частиц как самостоятельных объектов. Комплект классов для хранения информации о кластерах и их наборах.
Процедуры определения характеристик кластеров.
-
Блок операций по поиску треков, вершин взаимодействия и их характеристик для экспериментальных задач по физике высоких энергий, элементарных частиц и космических лучей. Комплект классов для хранения информации о треках.
-
Блок математических операций, содержащий:
Комплект классов элементарных геометрических объектов в двух- и трёх мерном пространстве - точки, прямые линии и операции с ними.
Алгоритм минимизации функционала на основе алгоритма Нелдера-Мида и набор классов для аппроксимации точек методом наименьших квадратов (аппроксимация наборов точек функциями Гаусса и Ландау, аппроксимация набора точек прямыми на плоскости и в пространстве с учётом возможных выбросов, аппроксимация произвольными функциями и т.д.).
-
Блок визуализации. Графическое представление результатов работы ПК в виде последовательности точек, кривых, гистограмм и поверхностей.
-
Блок нейронной сети Хопфилда с обратным распространением ошибки (обучение и рабочий режим).
II. Программы пользовательского типа, разработанные на основе ПК, и результаты их применения для обработки экспериментальных данных фотоэмульсионных экспериментов:
Исследование структуры нейтроноизбыточных ядер.
Измерения зарядов релятивистских ядер в толстослойных эмульсиях.
Изучение структуры уровней возбуждения ядер на основе анализа спектра электронов внутренней конверсии.
III. Результаты исследования характеристик частиц в твёрдотельных детекторах:
потоки нейтронов в эксперименте "Энергия плюс трансмутация" в условиях малой и большой загрузок с использованием теории нечётких множеств.
Зарядовый состав тяжёлых и сверхтяжёлых ядер космических лучей в оливинах из метеоритов.
IV. Программа, реализующая работу нейронной сети, для обработки данных RICH-детектора, являющаяся более эффективной по сравнению с другими методами при определении характеристик космических ядер.
Апробация результатов работы.
По теме диссертации опубликовано 77 работ в отечественных и зарубежных журналах: "Nuclear Instrument&Methods in Physics Research", "European Physical Journal", "Few-Body Systems", "Приборы и техника эксперимента", "Доклады Академии наук", "Radiation Measurements", "Известия РАН", "Письма в ЖТФ", "Вестник Отделения наук о Земле РАН", "Математическое моделирование" и др.
Результаты, полученные при анализе данных, неоднократно обсуждались на российских и международных конференциях и рабочих совещаниях. В частности, материалы диссертации докладывались на:
4th и 5th Conference on Nuclear and Particle Physics (2003, Fayoum, Egypt);
54 Международном совещании по ядерной спектроскопии и структуре атомного ядра (Белгород, 2004);
“Channeling 2004" – International Conference on Charged and Neutral Particles Channeling Phenomena (2004, Frascati, Italy);
LV National Conference on Nuclear Physics “Frontiers in the Physics of Nucleus” (2005, Saint-Petersburg):
International Conference Nuclear Physics and Atomic Energy (NPAE-2006, Киев);
23rd International Conference on Nuclear Tracks in Solids; (Beijing, China 2006);
56 Международной конференции по проблемам ядерной спектроскопии и структуре атомного ядра (2006, г. Саров);
Международной конференции “Current problems in nuclear physics and atomic energy” (NPAE-Kyiv 2006);
20th European Conference on Few-Body Problems in Physics (Pisa, Italy, 2007);
6th International Conference on Nuclear and Particle Physics (2007, Luxor, Egypt);
XXXVI Lunar and Planetary Science Conference (2007, League City, Texas);
18 международной конференции «Взаимодействие ионов с поверхностью», ВИП-2007, (2007 г., Звенигород, Россия);
7th International Conference on Radioactive Nuclear Beams (2006, Cortina d'Ampezzo, Italy);
VIII Международной конференции «Физико-химические и петрографические исследования в науках о Земле» (Москва, 2007 г.);
38th, 39th и 40th Lunar and Planetary Science Conference, (Houston, USA 2007, 2008, 2009);
30-й Всероссийской конференции по космическим лучам (2008 г., Санкт-Петербург);
9ой Международной конференция «Физико-химические и петрофизические исследования в науках о Земле» (Москва, 2008 г.);
24th International Conference on Nuclear Tracks in Solids (Bologna, Italy, 2008);
Conference CAMMAC (COMETS, ASTEROIDS, METEORS, METEORITES, ASTROBLEMS, CRATERS) (Украина, г. Винница, 2008);
XIX Международной конференции "Взаимодействие ионов с поверхностью" (ВИП-2009);
72 Annual Meeting of the Meteoritical Society (Nancy, France, 2009);
Общая структура работы. Диссертация состоит из восьми глав, в том числе Введение, Заключение и Приложение, содержит 167 страниц текста, 130 рисунков и список литературы из 162 наименований.